Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity

Abstract

Cavity quantum electrodynamics (QED) systems allow the study of a variety of fundamental quantum-optics phenomena, such as entanglement, quantum decoherence and the quantum–classical boundary1,2,3,4,5,6,7,8,9. Such systems also provide test beds for quantum information science. Nearly all strongly coupled cavity QED experiments have used a single atom in a high-quality-factor (high-Q) cavity. Here we report the experimental realization of a strongly coupled system in the solid state: a single quantum dot embedded in the spacer of a nanocavity, showing vacuum-field Rabi splitting exceeding the decoherence linewidths of both the nanocavity and the quantum dot. This requires a small-volume cavity and an atomic-like two-level system5,10. The photonic crystal11 slab nanocavity—which traps photons when a defect is introduced inside the two-dimensional photonic bandgap by leaving out one or more holes12—has both high Q and small modal volume V, as required for strong light–matter interactions13. The quantum dot has two discrete energy levels with a transition dipole moment much larger than that of an atom14,15,16, and it is fixed in the nanocavity during growth.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Photonic crystal nanocavity.
Figure 2: Quantum dots and cavity modes.
Figure 3: Dot–nanocavity anti-crossing.
Figure 4: Dot–nanocavity vacuum Rabi splitting.

References

  1. Berman, P. (ed.) Cavity Quantum Electrodynamics (Academic, San Diego, 1994)

  2. Brune, M. et al. Quantum Rabi oscillations: A direct test of field quantization in a cavity. Phys. Rev. Lett. 76, 1800–1803 (1996)

    ADS  CAS  Article  Google Scholar 

  3. Haroche, S. Entanglement, decoherence, and the quantum/classical boundary. Phys. Today 36–42 (July 1998)

  4. Raimond, J. M., Brune, M. & Haroche, S. Colloquium: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001)

    ADS  MathSciNet  Article  Google Scholar 

  5. Mabuchi, H. & Doherty, A. C. Cavity quantum electrodynamics: Coherence in context. Science 298, 1372–1377 (2002)

    ADS  CAS  Article  Google Scholar 

  6. McKeever, J., Boca, A., Boozer, A. D., Buck, J. R. & Kimble, H. J. Experimental realization of a one-atom laser in the regime of strong coupling. Nature 425, 268–271 (2003)

    ADS  CAS  Article  Google Scholar 

  7. Keller, M., Lange, B., Hayasaka, K., Lange, W. & Walther, H. Deterministic coupling of single ions to an optical cavity. Appl. Phys. B 76, 125–128 (2003)

    ADS  CAS  Article  Google Scholar 

  8. Kreuter, A. et al. Spontaneous emission lifetime of a single trapped Ca+ ion in a high finesse cavity. Phys. Rev. Lett. 92, 203002 (2004)

    ADS  CAS  Article  Google Scholar 

  9. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004)

    ADS  CAS  Article  Google Scholar 

  10. Khitrova, G., Gibbs, H. M., Jahnke, F., Kira, M. & Koch, S. W. Nonlinear optics of normal-mode-coupling semiconductor microcavities. Rev. Mod. Phys. 71, 1591–1639 (1999)

    ADS  Article  Google Scholar 

  11. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    ADS  CAS  Article  Google Scholar 

  12. Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999)

    CAS  Article  Google Scholar 

  13. Akahane, Y., Asano, T., Song, B.-S. & Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003)

    ADS  CAS  Article  Google Scholar 

  14. Marzin, J.-Y., Gérard, J.-M., Izraël, A., Barrier, D. & Bastard, G. Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs. Phys. Rev. Lett. 73, 716–719 (1994)

    ADS  CAS  Article  Google Scholar 

  15. Brunner, K., Abstreiter, G., Böhm, G., Tränkle, G. & Weimann, G. Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure. Phys. Rev. Lett. 73, 1138–1141 (1994)

    ADS  CAS  Article  Google Scholar 

  16. Gammon, D. & Steel, D. G. Optical studies of single quantum dots. Phys. Today 36–41 (October 2002)

  17. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992)

    ADS  CAS  Article  Google Scholar 

  18. Gammon, D., Snow, E. S., Shanabrook, B. V., Katzer, D. S. & Park, D. Fine structure in the optical spectra of single GaAs quantum dots. Phys. Rev. Lett. 76, 3005–3008 (1996)

    ADS  CAS  Article  Google Scholar 

  19. Petroff, P. M., Lorke, A. & Imamoglu, A. Epitaxially self-assembled quantum dots. Phys. Today 46–52 (May 2001)

  20. Zrenner, A. et al. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature 418, 612–614 (2002)

    ADS  CAS  Article  Google Scholar 

  21. Moreau, E. et al. Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities. Appl. Phys. Lett. 79, 2865–2867 (2001)

    ADS  CAS  Article  Google Scholar 

  22. Bayer, M. et al. Inhibition and enhancement of the spontaneous emission of quantum dots in structured microcavities. Phys. Rev. Lett. 86, 3168–3171 (2001)

    ADS  CAS  Article  Google Scholar 

  23. Happ, T. D. et al. Enhanced light emission of InxGa1-xAs quantum dots in a two-dimensional photonic-crystal defect microcavity. Phys. Rev. B 66, 041303(R) (2002)

    ADS  Article  Google Scholar 

  24. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003)

    ADS  CAS  Article  Google Scholar 

  25. Santori, C., Fattal, D., Vučković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002)

    ADS  CAS  Article  Google Scholar 

  26. Yoshie, T., Shchekin, O. B., Chen, H., Deppe, D. G. & Scherer, A. Planar photonic crystal nanolasers (II): Low-threshold quantum dot lasers. IEICE Trans. Electron. E87-C, 300–307 (2004)

    Google Scholar 

  27. Kiraz, A. et al. Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure. Appl. Phys. Lett. 78, 2932–2934 (2001)

    Article  Google Scholar 

  28. Carmichael, H. J., Brecha, R. J., Raizen, M. G., Kimble, H. J. & Rice, P. R. Subnatural linewidth averaging for coupled atomic and cavity-mode oscillators. Phys. Rev. A 40, 5516–5519 (1989)

    ADS  CAS  Article  Google Scholar 

  29. Stanley, R. P., Houdré, R., Weisbuch, C., Oesterle, U. & Ilegems, M. Cavity-polariton photoluminescence in semiconductor microcavities: Experimental evidence. Phys. Rev. B 53, 10995–11007 (1996)

    ADS  CAS  Article  Google Scholar 

  30. Lee, E. S. et al. Saturation of normal-mode coupling in aluminium-oxide-aperture semiconductor nanocavities. J. Appl. Phys. 89, 807–809 (2001)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

The Caltech group thanks S. Noda and Y. Akahane for discussions on the cavity designs, and the MURI Center for Photonic Quantum Information Systems (ARO/ARDA), NSF-ECS-NIRT and AFOSR for financial support. The Tucson group thanks E. Yablonovich for suggestions, and AFOSR, DURINT, NSF-AMOP and NSF-ECS-EPDT for support. The Texas group acknowledges support from NSF-ECS-NIRT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Khitrova.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yoshie, T., Scherer, A., Hendrickson, J. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004). https://doi.org/10.1038/nature03119

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03119

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing