Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bose–Einstein condensation of excitons in bilayer electron systems

Abstract

An exciton is the particle-like entity that forms when an electron is bound to a positively charged ‘hole’. An ordered electronic state in which excitons condense into a single quantum state was proposed as a theoretical possibility many years ago. We review recent studies of semiconductor bilayer systems that provide clear evidence for this phenomenon and explain why exciton condensation in the quantum Hall regime, where these experiments were performed, is as likely to occur in electron–electron bilayers as in electron–hole bilayers. In current quantum Hall excitonic condensates, disorder induces mobile vortices that flow in response to a supercurrent and limit the extremely large bilayer counterflow conductivity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: An electron–electron bilayer system in a strong magnetic field is equivalent to an electron–hole bilayer.
Figure 2: Tunnelling rate versus interlayer voltage in a bilayer electron system.
Figure 3: Hall voltage measurements reveal exciton condensation.
Figure 4: Motion of unpaired vortices leads to dissipation in excitonic superfluids.

References

  1. 1

    Keldysh, L. V. & Kopaev, Y. V. Possible instability of the semimetallic state with respect to coulombic interaction. Fiz. Tverd. Tela. 6, 2791 (1964)

    CAS  Google Scholar 

  2. 2

    Snoke, D. Spontaneous Bose coherence of excitons and polaritons. Science 298, 1368–1372 (2002)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Butov, L. V. Exciton condensation in coupled quantum wells. Solid State Commun. 127, 89–98 (2003)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Lozovik, Yu. E. & Yudson, V. I. Novel mechanism of superconductivity—pairing of spatially separated electrons and holes. Zh. Eksp. Teor. Fiz. 71, 738–753 (1976); Sov. Phys. JETP 44, 389–397 (1976)

    Google Scholar 

  5. 5

    Shevchenko, S. I. Theory of superconductivity of systems with pairing of spatially separated electrons and holes. Fiz. Nizk. Temp. 2, 505 (1976); Sov. J. Low-Temp. Phys. 2, 251–256 (1976)

    Google Scholar 

  6. 6

    Butov, L. V. et al. Condensation of indirect excitons in coupled AlAs/GaAs quantum wells. Phys. Rev. Lett. 73, 304–307 (1994)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Butov, L. V., Gossard, A. C. & Chemla, D. S. Macroscopically ordered state in an exciton system. Nature 418, 754–757 (2002)

    ADS  Article  Google Scholar 

  8. 8

    Konig, J., Bonsager, M. C. & MacDonald, A. H. Dissipationless spin transport in thin film ferromagnets. Phys. Rev. Lett. 87, 187202–187204 (2001)

    ADS  Article  Google Scholar 

  9. 9

    Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Rezayi, E. H. & MacDonald, A. H. Fractional quantum Hall effect in a two-dimensional electron-hole fluid. Phys. Rev. B 42, 3224–3227 (1990)

    ADS  Article  Google Scholar 

  11. 11

    Yoshioka, D. & MacDonald, A. H. Double quantum-well electron-hole systems in strong magnetic fields. J. Phys. Soc. Jpn 59, 4211–4214 (1990)

    ADS  Article  Google Scholar 

  12. 12

    Fertig, H. Energy spectrum of a layered system in a strong magnetic field. Phys. Rev. B 40, 1087–1095 (1989)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Wen, X. G. & Zee, A. Neutral superfluid modes and ‘magnetic’ monopoles in multilayered quantum Hall systems. Phys. Rev. Lett. 69, 1811–1814 (1992)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Kuramoto, Y. & Horie, C. Two-dimensional excitonic phase in strong magnetic fields. Solid State Commun. 25, 713–716 (1978)

    ADS  Article  Google Scholar 

  15. 15

    Eisenstein, J. P., Boebinger, G. S., Pfeiffer, L. N., West, K. W. & He, Song New fractional quantum Hall state in double-layer two-dimensional electron systems. Phys. Rev. Lett. 68, 1383–1386 (1992)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Spielman, I. B., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Resonantly enhanced tunneling in a double layer quantum hall ferromagnet. Phys. Rev. Lett. 84, 5808–5811 (2000)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Independently contacted two-dimensional electron-systems in double quantum wells. Appl. Phys. Lett. 57, 2324–2326 (1990)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Kellogg, M., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Vanishing Hall resistance at high magnetic field in a double layer two-dimensional electron system. Phys. Rev. Lett. 93, 036801 (2004)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Tutuc, E., Shayegan, M. & Huse, D. Counterflow measurements in strongly correlated GaAs hole bilayers: evidence for electron-hole pairing. Phys. Rev. Lett. 93, 036802 (2004)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Kohn, W. & Sherrington, D. Two kinds of bosons and Bose condensates. Rev. Mod. Phys. 42, 1–11 (1970)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Abolfath, M., Radzihovsky, L. & MacDonald, A. H. Critical currents of ideal quantum Hall superfluids. Phys. Rev. B 68, 155318 (2003)

    ADS  Article  Google Scholar 

  22. 22

    Shevchenko, S. I. Phase diagram of systems with pairing of spatially separated electrons and holes. Phys. Rev. Lett. 72, 3242–3245 (1994)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Moon, K., Mori, H., Yang, K., Girvin, S. M. & MacDonald, A. H. Spontaneous interlayer coherence in double-layer quantum Hall systems: Charged vortices and Kosterlitz-Thouless phase transitions. Phys. Rev. B 51, 5138–5170 (1995)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation (J.P.E. and A.H.M.) and the Department of Energy (J.P.E.). We thank A. Burkov, Y. Joglekar, M. Kellogg, L. Pfeiffer, E. Rossi, I. Spielman and K. West for their essential help in this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. P. Eisenstein.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eisenstein, J., MacDonald, A. Bose–Einstein condensation of excitons in bilayer electron systems. Nature 432, 691–694 (2004). https://doi.org/10.1038/nature03081

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing