Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrical generation and absorption of phonons in carbon nanotubes


The interplay between discrete vibrational and electronic degrees of freedom directly influences the chemical and physical properties of molecular systems. This coupling is typically studied through optical methods such as fluorescence, absorption and Raman spectroscopy. Molecular electronic devices provide new opportunities for exploring vibration–electronic interactions at the single molecule level1,2,3,4,5,6. For example, electrons injected from a scanning tunnelling microscope tip into a metal can excite vibrational excitations of a molecule situated in the gap between tip and metal7. Here we show how current directly injected into a freely suspended individual single-wall carbon nanotube can be used to excite, detect and control a specific vibrational mode of the molecule. Electrons tunnelling inelastically into the nanotube cause a non-equilibrium occupation of the radial breathing mode, leading to both stimulated emission and absorption of phonons by successive electron tunnelling events. We exploit this effect to measure a phonon lifetime of the order of 10 ns, corresponding to a quality factor of well over 10,000 for this nanomechanical oscillator.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Measurement set-up and topographic images.
Figure 2: Spatially resolved spectroscopy along the suspended semiconducting SWCNT shown in Fig. 1b.
Figure 3: Current and diameter dependence of phonon-assisted tunnelling.
Figure 4: Comparison of the observed current dependence with theory.


  1. Park, H. et al. Nanomechanical oscillations in a single-C60 transistor. Nature 407, 57–60 (2000)

    Article  ADS  CAS  Google Scholar 

  2. Pasupathy, A. N. et al. Vibration-assisted electron tunneling in C140 single-molecule transistors. Preprint at 〈〉 (2003).

  3. Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002)

    Article  ADS  CAS  Google Scholar 

  4. Zhitenev, N. B., Meng, H. & Bao, Z. Conductance of small molecular junctions. Phys. Rev. Lett. 88, 226801 (2002)

    Article  ADS  CAS  Google Scholar 

  5. Qiu, X. H., Nazin, G. V. & Ho, W. Vibronic states in single molecule electron transport. Phys. Rev. Lett. 92, 206102 (2004)

    Article  ADS  CAS  Google Scholar 

  6. Weig, E. M. et al. Single-electron-phonon interaction in a suspended quantum dot phonon cavity. Phys. Rev. Lett. 92, 046804 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Stipe, B. C., Rezaei, M. A. & Ho, W. Single-molecule vibrational spectroscopy and microscopy. Science 280, 1732–1735 (1998)

    Article  ADS  CAS  Google Scholar 

  8. LeRoy, B. J., Lemay, S. G., Kong, J. & Dekker, C. Scanning tunneling spectroscopy of suspended single-wall carbon nanotubes. Appl. Phys. Lett. 84, 4280–4282 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Grabert, H. & Devoret, M. H. Single Charge Tunneling (Plenum, New York, 1992)

    Book  Google Scholar 

  10. Liang, W. J., Bockrath, M. & Park, H. Shell filling and exchange coupling in metallic single-walled carbon nanotubes. Phys. Rev. Lett. 88, 126801 (2002)

    Article  ADS  Google Scholar 

  11. Cobden, D. H. & Nygard, J. Shell filling in closed single-wall carbon nanotube quantum dots. Phys. Rev. Lett. 89, 046803 (2002)

    Article  ADS  Google Scholar 

  12. Venema, L. C., Meunier, V., Lambin, Ph. & Dekker, C. Atomic structure of carbon nanotubes from scanning tunneling microscopy. Phys. Rev. B 61, 2991–2996 (2000)

    Article  ADS  CAS  Google Scholar 

  13. Dresselhaus, M. S. & Eklund, P. C. Phonons in carbon nanotubes. Adv. Phys. 49, 705–814 (2000)

    Article  ADS  CAS  Google Scholar 

  14. Vitali, L. et al. Phonon spectromicroscopy of carbon nanostructures with atomic resolution. Phys. Rev. Lett. 93, 136103 (2004)

    Article  ADS  CAS  Google Scholar 

  15. Iliev, M. N., Litvinchuk, A. P., Arepalli, S., Nikolaev, P. & Scott, C. D. Fine structure of the low-frequency Raman phonon bands of single-wall carbon nanotubes. Chem. Phys. Lett. 316, 217–221 (2000)

    Article  ADS  CAS  Google Scholar 

  16. Reulet, B. et al. Acoustoelectric effects in carbon nanotubes. Phys. Rev. Lett. 85, 2829–2832 (2000)

    Article  ADS  CAS  Google Scholar 

  17. Cleland, A. Foundations of Nanomechanics (Springer, Berlin, 2003)

    Book  Google Scholar 

  18. Tien, P. K. & Gordon, J. P. Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor films. Phys. Rev. 129, 647–651 (1963)

    Article  ADS  Google Scholar 

  19. Hanna, A. E. & Tinkham, M. Variation of the Coulomb staircase in a two-junction system by fractional electron charge. Phys. Rev. B 44, 5919–5922 (1991)

    Article  ADS  CAS  Google Scholar 

Download references


We thank Ya. M. Blanter for discussions, and NWO and FOM for funding.

Author information

Authors and Affiliations


Corresponding author

Correspondence to C. Dekker.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

LeRoy, B., Lemay, S., Kong, J. et al. Electrical generation and absorption of phonons in carbon nanotubes. Nature 432, 371–374 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing