Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plasticity in single neuron and circuit computations

Abstract

Plasticity in neural circuits can result from alterations in synaptic strength or connectivity, as well as from changes in the excitability of the neurons themselves. To better understand the role of plasticity in the brain, we need to establish how brain circuits work and the kinds of computations that different circuit structures achieve. By linking theoretical and experimental studies, we are beginning to reveal the consequences of plasticity mechanisms for network dynamics, in both simple invertebrate circuits and the complex circuits of mammalian cerebral cortex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plasticity of circuit dynamics can arise from modifications of synaptic strength or of intrinsic membrane currents.
Figure 2: Different types of modulation of neuronal responsiveness.
Figure 3: The type of transformations realized by synaptic plasticity.
Figure 4: Computing with network complexity.

Similar content being viewed by others

References

  1. Marder, E. & Thirumalai, V. Cellular, synaptic and network effects of neuromodulation. Neural Netw. 15, 479–493 (2002).

    Article  PubMed  Google Scholar 

  2. Abbott, L. F. & Nelson, S. B. Synaptic plasticity: taming the beast. Nature Neurosci. 3 (suppl.), 1178–1183. (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Sjostrom, P. J. & Nelson, S. B. Spike timing, calcium signals and synaptic plasticity. Curr. Opin. Neurobiol. 12, 305–314 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Kandel, E. R. The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030–1038 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Martin, K. C. & Kosik, K. S. Synaptic tagging — who's it? Nature Rev. Neurosci. 3, 813–820 (2002).

    Article  CAS  Google Scholar 

  6. Dayan, P. & Abbott, L. F. in Theoretical Neuroscience (MIT, Cambridge, 2001).

    MATH  Google Scholar 

  7. Marder, E., Abbott, L. F., Turrigiano, G. G., Liu, Z. & Golowasch, J. Memory from the dynamics of intrinsic membrane currents. Proc. Natl Acad. Sci. USA 93, 13481–13486 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, W. & Linden, D. J. The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nature Rev. Neurosci. 4, 885–900 (2003).

    Article  ADS  CAS  Google Scholar 

  9. Daoudal, G. & Debanne, D. Long-term plasticity of intrinsic excitability: learning rules and mechanisms. Learn. Mem. 10, 456–465 (2003).

    Article  PubMed  Google Scholar 

  10. Prinz, A. A., Abbott, L. F. & Marder, E. The dynamic clamp comes of age. Trends Neurosci. 27, 218–224 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Sharp, A. A., Skinner, F. K. & Marder, E. Mechanisms of oscillation in dynamic clamp constructed two-cell half-center circuits. J. Neurophysiol. 76, 867–883 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Cajal, R. S. Histologie du Système Nerveux de l'Homme et des Vertébrés (Maloine, Paris, 1909).

    Google Scholar 

  13. Rall, W. Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J. Neurophysiol. 30, 1138–1168 (1967).

    Article  CAS  PubMed  Google Scholar 

  14. Rall, W. Time constants and electrotonic length of membrane cylinders and neurons. Biophys. J. 9, 1483–1508 (1969).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rall, W. & Rinzel, J. Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys. J. 13, 648–687 (1973).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Johnston, D., Magee, J. C., Colbert, C. M. & Cristie, B. R. Active properties of neuronal dendrites. Annu. Rev. Neurosci. 19, 165–186 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Migliore, M. & Shepherd, G. M. Emerging rules for the distributions of active dendritic conductances. Nature Rev. Neurosci. 3, 362–370 (2002).

    Article  CAS  Google Scholar 

  18. Yuste, R. & Tank, D. W. Dendritic integration in mammalian neurons, a century after Cajal. Neuron 16, 701–716 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Stuart, G., Spruston, N. & Hausser, M. Dendrites (MIT, Cambridge, Massachusetts, 2000).

    Google Scholar 

  20. Schwindt, P. C. & Crill, W. E. Amplification of synaptic current by persistent sodium conductance in apical dendrite of neocortical neurons. J. Neurophysiol. 74, 2220–2224 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Magee, J. C. Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons. Nature Neurosci. 2, 508–514 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Williams, S. R. & Stuart, G. J. Site independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons. J. Neurophysiol. 83, 3177–3182 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Magee, J. C. & Johnston, D. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Markram, H., Lübke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Hines, M. L. & Carnevale, N. T. The NEURON simulation environment. Neural Comput. 9, 1179–1209 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Koch, C. & Segev, I. Methods in Neuronal Modeling (MIT, Cambridge, 1998).

    Google Scholar 

  27. Bower, J. & Beeman, D. The Book of GENESIS (Springer, Berlin, 1994).

    MATH  Google Scholar 

  28. Golding, N. L., Staff, N. P. & Spruston, N. Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418, 326–331 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Turrigiano, G. G. & Nelson, S. B. Homeostatic plasticity in the developing nervous system. Nature Rev. Neurosci. 5, 97–107 (2004).

    Article  CAS  Google Scholar 

  30. Marder, E. & Prinz, A. A. Modeling stability in neuron and network function: the role of activity in homeostasis. Bioessays 24, 1145–1154 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C. & Nelson, S. B. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892–896 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Desai, N. S., Rutherford, L. C. & Turrigiano, G. G. Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nature Neurosci. 2, 515–520 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Goldman, M. S., Golowasch, J., Marder, E. & Abbott, L. F. Global structure, robustness, and modulation of neuronal models. J. Neurosci. 21, 5229–5238 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. MacLean, J. N., Zhang, Y., Johnson, B. R. & Harris-Warrick, R. M. Activity-independent homeostasis in rhythmically active neurons. Neuron 37, 109–120 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Golowasch, J., Abbott, L. F. & Marder, E. Activity-dependent regulation of potassium currents in an identified neuron of the stomatogastric ganglion of the crab Cancer borealis. J. Neurosci. 19, RC33 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Selverston, A. I. Are central pattern generators understandable? Behav. Brain Sci. 3, 535–571 (1980).

    Article  Google Scholar 

  37. Getting, P. A. Emerging principles governing the operation of neural networks. Annu. Rev. Neurosci. 12, 185–204 (1989).

    Article  CAS  PubMed  Google Scholar 

  38. Friesen, W. O. Reciprocal inhibition: a mechanism underlying oscillatory animal movements. Neurosci. Biobehav. Rev. 18, 547–553 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, X. -J. & Rinzel, J. Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comput. 4, 84–97 (1992).

    Article  Google Scholar 

  40. Van Vreeswijk, C., Abbott, L. F. & Ermentrout, G. B. When inhibition not excitation synchronizes neural firing. J. Comput. Neurosci. 1, 313–321 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. White, J. A., Chow, C. C., Ritt, J., Soto-Trevino, C. & Kopell, N. Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. J. Comput. Neurosci. 5, 5–16 (1998).

    Article  CAS  PubMed  MATH  Google Scholar 

  42. Marder, E. & Calabrese, R. L. Principles of rhythmic motor pattern generation. Physiol. Rev. 76, 687–717 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Nusbaum, M. P. & Beenhakker, M. P. A small-systems approach to motor pattern generation. Nature 417, 343–350 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Harris-Warrick, R. M. et al. Distributed effects of dopamine modulation in the crustacean pyloric network. Ann. N Y Acad. Sci. 860, 155–167 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Katz, P. S. & Frost, W. N. Intrinsic neuromodulation: altering neuronal circuits from within. Trends Neurosci. 19, 54–61 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Steriade, M., Jones, E. G. & McCormick, D. A. Thalamus (Elsevier, Amsterdam, 1997).

    Google Scholar 

  47. Destexhe, A. & Sejnowski, T. J. Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiol. Rev. 83, 1401–1453 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. McCormick, D. A. Cholinergic and noradrenergic modulation of thalamocortical processing. Trends Neurosci. 12, 215–221 (1989).

    Article  CAS  PubMed  Google Scholar 

  49. Mountcastle, V. B. in The Neurosciences: Fourth Study Program (eds Schmidt, F. O. & Worden, F. G.) 21–42 (MIT Press, Cambridge, 1979).

    Google Scholar 

  50. Hubel, D. H. & Wiesel, T. N. Shape and arrangement of columns in cat's striate cortex. J. Physiol. 165, 559–568 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Douglas, R. J. & Martin, K. A. A functional microcircuit for cat visual cortex. J. Physiol. 440, 735–769 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Szentagothai, J. The modular architectonic principle of neural centers. Rev. Physiol. Biochem. Pharmacol. 98, 11–61 (1983).

    Article  CAS  PubMed  Google Scholar 

  53. Barlow, H. in Models of the Visual Cortex (eds Rose, D. & Dobson, V.) 37–46 (Wiley, Chichester, 1985).

    Google Scholar 

  54. Braitenberg, V. & Schuz, A. Cortex: statistics and geometry of neuronal connectivity (Springer, Berlin, 1998).

    Book  Google Scholar 

  55. Destexhe, A., Rudolph, M. & Pare, D. The high-conductance state of neocortical neurons in vivo. Nature Rev. Neurosci. 4, 739–751 (2003).

    Article  CAS  Google Scholar 

  56. Ho, N. & Destexhe, A. Synaptic background activity enhances the responsiveness of neocortical pyramidal neurons. J. Neurophysiol. 84, 1488–1496 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Wiesenfeld, K. & Moss, F. Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373, 33–36 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Chance, F. S., Abbott, L. F. & Reyes, A. D. Gain modulation from background synaptic input. Neuron 35, 773–782 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Shu, Y., Hasenstaub, A., Badoual, M., Bal, T. & McCormick, D. A. Barrages of synaptic activity control the gain and sensitivity of cortical neurons. J. Neurosci. 23, 10388–10401 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rudolph, M. & Destexhe, A. A fast-conducting, stochastic integrative mode for neocortical neurons in vivo. J. Neurosci. 23, 2466–2476 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wei, D. S. et al. Compartmentalized and binary behavior of terminal dendrites in hippocampal pyramidal neurons. Science 293, 2272–2275 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Shepherd, G. M. & Brayton, R. K. Logic operations are properties of computer-simulated interactions between excitable dendritic spines. Neuroscience 21, 151–165 (1987).

    Article  CAS  PubMed  Google Scholar 

  63. Mel, B. W. Information processing in dendritic trees. Neural Comput. 6, 1031–1085 (1994).

    Article  MATH  Google Scholar 

  64. Softky, W. Sub-millisecond coincidence detection in active dendritic trees. Neuroscience 58, 13–41 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Shalden, M. N. & Newsome, W. T. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci. 18, 3870–3896 (1998).

    Article  Google Scholar 

  66. Moore, G. P., Perkel, D. H. & Segundo, J. P. Statistical analysis and functional interpretation of neuronal spike data. Annu. Rev. Physiol. 28, 493–522 (1966).

    Article  CAS  PubMed  Google Scholar 

  67. Rao, R., Olshausen, B. & Lewicki, M. Probabilistic Models of the Brain (MIT, Cambridge, 2002).

    Book  Google Scholar 

  68. Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

    Article  ADS  MathSciNet  CAS  MATH  PubMed  PubMed Central  Google Scholar 

  69. Roskies, A. The binding problem: special issue. Neuron 24, 7–125 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. von der Malsburg, C. & Schneider, W. A neural cocktail-party processor. Biol. Cybern. 54, 29–40 (1986).

    Article  CAS  PubMed  Google Scholar 

  71. Engel, A. K., Fries, P. & Singer, W. Dynamic predictions: oscillations and synchrony in top-down processing. Nature Rev. Neurosci. 2, 704–716 (2001).

    Article  CAS  Google Scholar 

  72. Abeles, M. Corticonics: Neuronal Circuits of the Cerebral Cortex (Cambridge University Press, Cambridge, 1991).

    Book  Google Scholar 

  73. Rudolph, M. & Destexhe, A. Correlation detection and resonance in neural systems with distributed noise sources. Phys. Rev. Lett. 86, 3662–3665 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Barlow, H. B. in Sensory Communications (ed. Rosenblith, W.) Ch. 13, 217–234 (MIT, Cambridge, 1961).

    Google Scholar 

  75. Barlow, H. & Foldiak, P. in The Computing Neuron Ch. 4 (eds Durbin, R., Miall, C. & G, M.) 54–72 (Addison-Wesley, New York, 1989).

    Google Scholar 

  76. Srinivasan, M. V., Laughlin, S. B. & Dubs, A. Predictive coding: a fresh view of inhibition in the retina. Proc. R. Soc. Lond. B 216, 427–459 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Ito, M. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol. Rev. 81, 1143–1195 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Bell, C. C., Han, V. Z., Sugawara, Y. & Grant, K. Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387, 278–281 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  79. Foldiak, P. Forming sparse representations by local anti-Hebbian learning. Biol. Cybern. 64, 165–170 (1990).

    Article  CAS  PubMed  Google Scholar 

  80. Wang, X. J., Liu, Y., Sanchez-Vives, M. V. & McCormick, D. A. Adaptation and temporal decorrelation by single neurons in the primary visual cortex. J. Neurophysiol. 89, 3279–3293 (2003).

    Article  PubMed  Google Scholar 

  81. Goldman, M. S., Maldonado, P. & Abbott, L. F. Redundancy reduction and sustained firing with stochastic depressing synapses. J. Neurosci. 22, 584–591 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Peters, A. & Yilmaz, E. Neuronal organization in area 17 of cat visual cortex. Cereb. Cort. 3, 49–68 (1993).

    Article  CAS  Google Scholar 

  83. Olshausen, B. A. & Field, D. J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  84. Perez-Orive, J. et al. Oscillations and sparsening of odor representations in the mushroom body. Science 297, 359–365 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  85. Hahnloser, R. H., Kozhevnikov, A. A. & Fee, M. S. An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature 419, 65–70 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Baranyi, A. & Feher, O. Conditioned changes of synaptic transmission in the motor cortex of the cat. Exp. Brain Res. 33, 283–298 (1978).

    Article  CAS  PubMed  Google Scholar 

  87. Kirkwood, A. & Bear, M. F. Hebbian synapses in visual cortex. J. Neurosci. 14, 1634–1645 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Thomson, A. M. Facilitation, augmentation and potentiation at central synapses. Trends Neurosci. 23, 305–312 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Hebb, D. O. The Organization of Behavior (Wiley, New York, 1949).

    Google Scholar 

  90. Gupta, A., Wang, Y. & Markram, H. Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287, 273–278 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  91. Silberberg, G., Gupta, A. & Markram, H. Stereotypy in neocortical microcircuits. Trends Neurosci. 25, 227–230 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Buonomano, D. V. & Merzenich, M. M. Temporal information transformed into a spatial code by a neural network with realistic properties. Science 267, 1028–1030 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  93. Maass, W., Natschlager, T. & Markram, H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14, 2531–2560 (2002).

    Article  PubMed  MATH  Google Scholar 

  94. Monier, C., Chavane, F., Baudot, P., Graham, L. J. & Fregnac, Y. Orientation and direction selectivity of synaptic inputs in visual cortical neurons: a diversity of combinations produces spike tuning. Neuron 37, 663–680 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Steriade, M. & McCarley, R. W. Brainstem Control of Wakefulness and Sleep (Plenum, New York, 1990).

    Book  Google Scholar 

  96. Bear, M. F. & Singer, W. Modulation of visual cortical plasticity by acetylcholine and noradrenaline. Nature 320, 172–176 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  97. Shulz, D. E., Sosnik, R., Ego, V., Haidarliu, S. & Ahissar, E. A neuronal analogue of state-dependent learning. Nature 403, 549–553 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  98. Stickgold, R., Hobson, J. A., Fosse, R. & Fosse, M. Sleep, learning, and dreams: off-line memory reprocessing. Science 294, 1052–1057 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  99. Hinton, G. E., Dayan, P., Frey, B. J. & Neal, R. M. The ‘wake-sleep’ algorithm for unsupervised neural networks. Science 268, 1158–1161 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  100. Frégnac, Y. in Handbook of Brain Theory and Neural Networks (ed. Arbib, M. A.) 515–522 (MIT, Cambridge, 2002).

    Google Scholar 

Download references

Acknowledgements

We thank M. Rudolph and Y. Fregnac for comments on the manuscript. The authors' research was supported by the NIH (E.M.), CNRS, HFSP and the European Union (Future and Emerging Technologies).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Destexhe, A., Marder, E. Plasticity in single neuron and circuit computations. Nature 431, 789–795 (2004). https://doi.org/10.1038/nature03011

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03011

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing