Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Crystallization of charge holes in the spin ladder of Sr14Cu24O41

Abstract

Determining the nature of the electronic phases that compete with superconductivity in high-transition-temperature (high-Tc) superconductors is one of the deepest problems in condensed matter physics. One candidate is the ‘stripe’ phase1,2,3, in which the charge carriers (holes) condense into rivers of charge that separate regions of antiferromagnetism. A related but lesser known system is the ‘spin ladder’, which consists of two coupled chains of magnetic ions forming an array of rungs. A doped ladder can be thought of as a high-Tc material with lower dimensionality, and has been predicted to exhibit both superconductivity4,5,6 and an insulating ‘hole crystal’4,7,8 phase in which the carriers are localized through many-body interactions. The competition between the two resembles that believed to operate between stripes and superconductivity in high-Tc materials9. Here we report the existence of a hole crystal in the doped spin ladder of Sr14Cu24O41 using a resonant X-ray scattering technique10. This phase exists without a detectable distortion in the structural lattice, indicating that it arises from many-body electronic effects. Our measurements confirm theoretical predictions4,7,8, and support the picture that proximity to charge ordered states is a general property of superconductivity in copper oxides.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Energy dependence of the hole superstructure reflection compared to X-ray absorption spectra.
Figure 2: Appearance of the hole superstructure peak on resonance.
Figure 3: Energy- and LL-dependence of the hole superstructure reflection.
Figure 4: Temperature dependence of the hole crystal.

References

  1. 1

    Zaanen, J. & Gunnarsson, O. Charged magnetic domain lines and magnetism of high-T c oxides. Phys. Rev. B 40, R7391–R7394 (1989)

    ADS  Article  Google Scholar 

  2. 2

    Löw, U., Emery, V. J., Fabricius, K. & Kivelson, S. A. Study of an Ising model with competing long- and short-range interactions. Phys. Rev. Lett. 72, 1918–1921 (1994)

    ADS  Article  Google Scholar 

  3. 3

    Tranquada, J. M., Sternlieb, J. D., Axe, J. D., Nakamura, Y. & Uchida, S. Evidence for stripe correlations of spins and holes in copper-oxide superconductors. Nature 375, 561–564 (1995)

    ADS  Article  Google Scholar 

  4. 4

    Dagotto, E., Riera, J. & Scalapino, D. Superconductivity in ladders and coupled planes. Phys. Rev. B 45, 5744–5747 (1992)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Dagotto, E. & Rice, T. M. Surprises on the way from one- to two- dimensional quantum magnets: The ladder materials. Science 271, 618–623 (1996)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Sigrist, M., Rice, T. M. & Zhang, F. C. Superconductivity in a quasi-one-dimensional spin liquid. Phys. Rev. B 49, 12058–12061 (1994)

    ADS  CAS  Article  Google Scholar 

  7. 7

    White, S. R., Affleck, I. & Scalapino, D. J. Friedel oscillations and charge density waves in chains and ladders. Phys. Rev. B 65, 165122 (2002)

    ADS  Article  Google Scholar 

  8. 8

    Carr, S. T. & Tsvelik, A. M. Superconductivity and charge-density waves in a quasi-one-dimensional spin gap system. Phys. Rev. B 65, 195121 (2002)

    ADS  Article  Google Scholar 

  9. 9

    Tranquada, J. M. et al. Coexistence of, and competition between, superconductivity and charge-stripe order in La1.6-xNd0.4SrxCuO4 . Phys. Rev. Lett. 78, 338–341 (1997)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Abbamonte, P. et al. A structural probe of the doped holes in cuprate superconductors. Science 297, 581–584 (2002)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Fukuda, T., Mizuki, J. & Matsuda, M. Periodic hole structure in a spin-chain ladder material Sr14Cu24O41 . Phys. Rev. B 66, 12104 (2002)

    ADS  Article  Google Scholar 

  12. 12

    Etrillard, J., Braden, M., Gukasov, A., Ammerahl, U. & Revcolevschi, A. Structural aspects of the spin-ladder compound Sr14Cu24O41 . Physica C 403, 290–296 (2004)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Nücker, N. et al. Hole distribution in (Sr,Ca,Y,La)14Cu24O41 ladder compounds studied by x-ray absorption spectroscopy. Phys. Rev. B 62, 14384–14392 (2000)

    ADS  Article  Google Scholar 

  14. 14

    Uehara, M. et al. Superconductivity in the ladder material Sr0.4Ca13.6Cu24O41 . J. Phys. Soc. Jpn 65, 2764–2767 (1996)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Blumberg, G. et al. Sliding density-wave in Sr14Cu24O41 ladder compounds. Science 297, 584–587 (2002)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Gorshunov, B. et al. Charge-density wave formation in Sr14-xCaxCu24O41 . Phys. Rev. B 66, 60508(R) (2002)

    ADS  Article  Google Scholar 

  17. 17

    Kitano, H. et al. Microwave and millimeter wave spectroscopy in the slightly hole-doped ladders of Sr14Cu24O41 . Europhys. Lett. 56, 434–440 (2001)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Grüner, G. Density Waves in Solids (Perseus, Cambridge, MA, 1994)

    Google Scholar 

  19. 19

    Motoyama, N., Osafune, T., Kakeshita, T., Eisaki, H. & Uchida, S. Effect of Ca substitution and pressure on the transport and magnetic properties of Sr14Cu24O41 with doped two-leg Cu-O ladders. Phys. Rev. B 55, R3386–R3389 (1997)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Matsuda, M. et al. Magnetic excitations and structural change in the S = 1/2 quasi-one-dimensional magnet Sr14-xYxCu24O41 (0 ≤ x ≤ 1). Phys. Rev. B 56, 14499–14504 (1997)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Cox, D. E. et al. Low-temperature charge ordering in Sr14Cu24O41 . Phys. Rev. B 57, 10750–10754 (1998)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Hiroi, Z., Amelinckx, S., Van Tendeloo, G. & Kobayashi, N. Microscopic origin of dimerization in the CuO2 chains in Sr14Cu24O41 . Phys. Rev. B 54, 15849–15855 (1996)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Osafune, T., Motoyama, N., Eisaki, H. & Uchida, S. Optical study of the Sr14-xCaxCu24O41 system: evidence for hole-doped Cu2O3 ladders. Phys. Rev. Lett. 78, 1980–1983 (1997)

    ADS  CAS  Article  Google Scholar 

  24. 24

    van Smaalen, S. Comment on “Periodic hole structure in a spin-chain ladder material Sr14Cu24O41”. Phys. Rev. B 67, 26101 (2003)

    ADS  Article  Google Scholar 

  25. 25

    Kao, C.-C. et al. Magnetic-resonance exchange scattering at the iron L II and L III edges. Phys. Rev. Lett. 65, 373–376 (1990)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Dürr, H. A. et al. Chiral magnetic domain structures in ultrathin FePd films. Science 284, 2166–2168 (1999)

    Article  Google Scholar 

  27. 27

    Chen, C. T. et al. Out-of-plane orbital characters of intrinsic and doped holes in La2-xSrxCuO4 . Phys. Rev. Lett. 68, 2543–2546 (1992)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Vuletić, T. et al. Suppression of the charge-density-wave state in Sr14Cu24O41 by calcium doping. Phys. Rev. Lett. 90, 257002 (2003)

    ADS  Article  Google Scholar 

  29. 29

    Wigner, E. On the interaction of electrons in metals. Phys. Rev. 46, 1002–1011 (1934)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge J. Grazul and M. Sergent for help with sample polishing, and I. Affleck, J. B. Marston, Y.-J. Kim, P. M. Platzman, J. M. Tranquada, A. Tsvelik and T. M. Rice for discussions. This work was supported by the US Department of Energy, NWO (Dutch Science Foundation), and FOM (Netherlands Organization for Fundamental Research on Matter).

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Abbamonte.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abbamonte, P., Blumberg, G., Rusydi, A. et al. Crystallization of charge holes in the spin ladder of Sr14Cu24O41. Nature 431, 1078–1081 (2004). https://doi.org/10.1038/nature02925

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing