Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Implications for hydrologic processes on Mars from extensive bedrock outcrops throughout Terra Meridiani

Abstract

Grey haematite was recently detected in the Terra Meridiani region of Mars1,2 by the Thermal Emission Spectrometer onboard the Mars Global Surveyor spacecraft. The formation of haematite on Earth often requires liquid water to be present for long periods of time, making this an important target for deciphering the history of water on Mars. The Mars Exploration Rover Opportunity landed in Meridiani early in 2004 and has since discovered light-toned bedrock outcrops rich in chemical and textural signatures of long-term water interaction locally at the landing site3. Here I use remote sensing data to show that the light-toned outcrops at the landing site are not a local phenomenon. Instead, they are observable throughout the haematite-bearing plains in both visible and thermal infrared remote sensing data. Moreover, the light-toned material outcrops around much of the margin and is mappable for hundreds of kilometres to the north, east and west of the plains. I infer that 3 × 105 km2 of this material is exposed over 20° of longitude, indicating the extended presence of surface or near-surface water over a large region of Mars.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: THEMIS-derived thermal inertia map of the Terra Meridiani region of Mars16.
Figure 2: THEMIS-derived thermal inertia map indexed on Fig. 1 overlaid with geomorphic unit boundaries from ref. 4.
Figure 3: Greyscale mosaic of THEMIS-derived thermal inertia indexed on Fig. 1.
Figure 4: Examples of etched terrain (E) within the haematite-bearing plains (Ph).

References

  1. Christensen, P. R. et al. Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evidence for near-surface water. J. Geophys. Res. 105, 9623–9642 (2000)

    ADS  CAS  Article  Google Scholar 

  2. Christensen, P. R., Morris, R. V., Lane, M. D., Bandfield, J. L. & Malin, M. C. Global mapping of martian hematite mineral deposits: Remnants of water-driven processes on early Mars. J. Geophys. Res. 106, 23873–23886 (2001)

    ADS  CAS  Article  Google Scholar 

  3. Squyres, S. W. et al. Initial results from the MER ATHENA science investigation at Gusev Crater and Meridiani Planum. Lunar Planet. Sci. Conf. XXXV, 2187 (2004)

    ADS  Google Scholar 

  4. Hynek, B. M., Arvidson, R. E. & Phillips, R. J. Geologic setting and origin of Terra Meridiani hematite deposit on Mars. J. Geophys. Res. 107, doi:10.1029/2002JE001891 (2002)

  5. Lane, M. D., Christensen, P. R. & Hartmann, W. K. Utilization of the THEMIS visible and infrared imaging data for crater population studies of the Meridiani Planum landing site. Geophys. Res. Lett. 30, doi:10.1029/2003GL017183 (2003)

  6. Edgett, K. S. & Malin, M. C. Martian sedimentary rock stratigraphy: Outcrops and interbedded craters of northwest Sinus Meridiani and southwest Arabia Terra. Geophys. Res. Lett. 29, doi:10.1029/2002GL016515 (2002)

  7. Arvidson, R. E. et al. Mantled and exhumed terrains in Terra Meridiani, Mars. J. Geophys. Res. 108, doi:10.1029/2002JE001982 (2003)

  8. Palluconi, F. D. & Kieffer, H. H. Thermal inertia mapping of Mars from 60 degrees S to 60 degrees N. Icarus 45, 415–426 (1981)

    ADS  Article  Google Scholar 

  9. Mellon, M. T., Jakosky, B. M., Kieffer, H. H. & Christensen, P. R. High-resolution thermal inertia mapping from the Mars Global Surveyor Thermal Emission Spectrometer. Icarus 148, 437–455 (2000)

    ADS  Article  Google Scholar 

  10. Tanaka, K. L. Dust and ice deposition in the martian geologic record. Icarus 144, 254–266 (2000)

    ADS  Article  Google Scholar 

  11. Malin, M. C. & Edgett, K. S. Sedimentary rocks of early Mars. Science 290, 1927–1937 (2000)

    ADS  CAS  Article  Google Scholar 

  12. Malin, M. C. & Edgett, K. S. Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission. J. Geophys. Res. 106, 23429–23570 (2001)

    ADS  Article  Google Scholar 

  13. Hynek, B. M., Phillips, R. J. & Arvidson, R. E. Explosive volcanism in the Tharsis region: Global evidence in the martian geologic record. J. Geophys. Res. 108, doi:10.1029/2003JE002062 (2003)

  14. Hynek, B. M. et al. Thermophysical properties of Meridiani Planum, Mars. Lunar Planet. Sci. Conf. XXXV, 1899 (2004)

    ADS  Google Scholar 

  15. Christensen, P. R. et al. Mini-TES observations of the Gusev and Meridiani landing sites. Lunar Planet. Sci. Conf. XXXV, 2186 (2004)

    ADS  Google Scholar 

  16. Putzig, N. E. et al. Mars thermal inertia from THEMIS data. Lunar Planet. Sci. Conf. XXXV, 1863 (2004)

    ADS  Google Scholar 

  17. Jakosky, B. M. et al. Remote-sensing of the thermophysical properties of the MER and Beagle II landing sites on Mars. J. Geophys. Res. (submitted) (2004)

Download references

Acknowledgements

I thank N. E. Putzig and M. T. Mellon for THEMIS-derived thermal inertia products used in this study and B. M. Jakosky and J. R. Zimbelman for comments on this manuscript. This work was supported by the National Aeronautics and Space Agency (NASA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian M. Hynek.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hynek, B. Implications for hydrologic processes on Mars from extensive bedrock outcrops throughout Terra Meridiani. Nature 431, 156–159 (2004). https://doi.org/10.1038/nature02902

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02902

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing