Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Negative intrinsic resistivity of an individual domain wall in epitaxial (Ga,Mn)As microdevices


Magnetic domains, and the boundaries that separate them (domain walls, DWs), play a central role in the science of magnetism1. Understanding and controlling domains is important for many technological applications in spintronics, and may lead to new devices2. Although theoretical efforts have elucidated several mechanisms underlying the resistance of a single DW3,4,5,6,7,8, various experiments9,10,11,12,13,14,15 report conflicting results, even for the overall sign of the DW resistance. The question of whether an individual DW gives rise to an increase or decrease of the resistance therefore remains open. Here we report an approach to DW studies in a class of ferromagnetic semiconductors (as opposed to metals16,17) that offer promise for spintronics18. These experiments involve microdevices patterned from monocrystalline (Ga,Mn)As epitaxial layers. The giant planar Hall effect that we previously observed19 in this material enables direct, real-time observation of the propagation of an individual magnetic DW along multiprobe devices. We apply steady and pulsed magnetic fields, to trap and carefully position an individual DW within each separate device studied. This protocol reproducibly enables high-resolution magnetoresistance measurements across an individual wall. We consistently observe negative intrinsic DW resistance that scales with channel width. This appears to originate from sizeable quantum corrections to the magnetoresistance.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Sample configuration and measurement scheme.
Figure 2: Time-resolved magnetoresistance measured across a single DW.
Figure 3: Scheme to align devices along the crystallographic [110] orientation.
Figure 4: High-resolution extraction of the intrinsic DWR.


  1. Hubert, A. & Schäfer, R. Magnetic Domains: The Analysis of Magnetic Microstructures (Springer, Berlin, 1998)

    Google Scholar 

  2. Ferré, J. Dynamics of magnetization reversal: From continuous to patterned ferromagnetic films. Topics Appl. Phys. 83, 127–165 (2002)

    Article  ADS  Google Scholar 

  3. Berger, L. Low-field magnetoresistance and domain drag in ferromagnets. J. Appl. Phys. 49, 2156–2161 (1978)

    Article  ADS  CAS  Google Scholar 

  4. Cabrera, G. G. & Falicov, L. M. Theory of residual resistivity of Bloch walls. Phys. Status Solidi B 61, 539–549 (1974); 62, 217–222 (1974)

    Article  ADS  Google Scholar 

  5. Viret, M. et al. Spin scattering in ferromagnetic thin films. Phys. Rev. B 53, 8464–8468 (1996)

    Article  ADS  CAS  Google Scholar 

  6. Levy, P. M. & Zhang, S. Resistivity due to domain wall scattering. Phys. Rev. Lett. 79, 5110–5113 (1997)

    Article  ADS  CAS  Google Scholar 

  7. Tatara, G. & Fukumura, H. Resistivity due to a domain wall in ferromagnetic metal. Phys. Rev. Lett. 78, 3773–3776 (1997)

    Article  ADS  Google Scholar 

  8. van Gorkom, R. P., Brataas, A. & Bauer, G. E. W. Negative domain wall resistance in ferromagnets. Phys. Rev. Lett. 83, 4401–4404 (1999)

    Article  ADS  CAS  Google Scholar 

  9. Viret, M. et al. Anisotropy of domain wall resistance. Phys. Rev. Lett. 85, 3962–3965 (2000)

    Article  ADS  CAS  Google Scholar 

  10. Ruediger, U., Yu, J., Zhang, S., Kent, A. D. & Parkin, S. S. P. Negative domain wall contribution to the resistivity of microfabricated Fe wires. Phys. Rev. Lett. 80, 5639–5642 (1998)

    Article  ADS  CAS  Google Scholar 

  11. Klein, L. et al. Domain wall resistivity in SrRuO3 . Phys. Rev. Lett. 84, 6090–6093 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Ebels, U., Radulescu, A., Henry, Y., Piraux, L. & Ounadjela, K. Spin accumulation and domain wall magnetoresistance in 35 nm Co wires. Phys. Rev. Lett. 84, 983–986 (2000)

    Article  ADS  CAS  Google Scholar 

  13. Taniyama, T., Nakatani, I., Namikawa, T. & Yamazaki, Y. Resistivity due to domain walls in Co zigzag wires. Phys. Rev. Lett. 82, 2780–2783 (1999)

    Article  ADS  CAS  Google Scholar 

  14. Xu, Y. B. et al. Magnetoresistance of a domain wall at a submicron junction. Phys. Rev. B 61, R14901–R14904 (2000)

    Article  ADS  CAS  Google Scholar 

  15. Danneau, R. et al. Individual domain wall resistance in submicron ferromagnetic structures. Phys. Rev. Lett. 88, 157201–157204 (2002)

    Article  ADS  CAS  Google Scholar 

  16. Allwood, D. A. et al. Submicrometer ferromagnetic NOT gate and shift register. Science 296, 2003–2006 (2002)

    Article  ADS  CAS  Google Scholar 

  17. Ono, T. et al. Propagation of a magnetic domain wall in a submicrometer magnetic wire. Science 284, 468–470 (1999)

    Article  ADS  CAS  Google Scholar 

  18. Wolf, S. A. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Tang, H. X., Kawakami, R. K., Awschalom, D. D. & Roukes, M. L. Giant planar Hall effect in epitaxial (Ga,Mn)As devices. Phys. Rev. Lett. 90, 107201–107204 (2003)

    Article  ADS  CAS  Google Scholar 

  20. Ohno, H. Making nonmagnetic semiconductors ferromagnetic. Science 281, 951–956 (1998)

    Article  ADS  CAS  Google Scholar 

  21. Yamanouchi, M., Chiba, D., Matsukura, F. & Ohno, H. Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature 428, 539–542 (2004)

    Article  ADS  CAS  Google Scholar 

  22. Welp, U., Vlasko-Vlasov, V. K., Liu, X., Furdyna, J. K. & Wojtowicz, T. Magnetic domain structure and magnetic anisotropy in Ga1-xMnAs. Phys. Rev. Lett. 90, 167206–167209 (2003)

    Article  ADS  CAS  Google Scholar 

  23. Tang, H. X., Kawakami, R. K., Awschalom, D. D., Roukes, M. L. . Phys. Rev. Lett. (submitted)

  24. Tang, H. X. & Roukes, M. L. Electrical transport across an individual magnetic domain wall in (Ga,Mn)As microdevices. Phys. Rev. B (submitted); preprint at 〈〉 (2004)

  25. Potashnik, S. J. et al. Saturated ferromagnetism and magnetization deficit in optimally annealed Ga1-xMnxAs epilayers. Phys. Rev. B 66, 012408 (2002)

    Article  ADS  Google Scholar 

  26. Tang, H. X. . Semiconductor Magnetoelectronics for Spintronics and Suspended 2DEG for Mechanoelectronics PhD dissertation, California Inst. Technol. (2002)

    Google Scholar 

Download references


We acknowledge support from DARPA/DSO and AFOSR. We thank A.H. MacDonald for discussions.

Author information

Authors and Affiliations


Corresponding author

Correspondence to M. L. Roukes.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tang, H., Masmanidis, S., Kawakami, R. et al. Negative intrinsic resistivity of an individual domain wall in epitaxial (Ga,Mn)As microdevices. Nature 431, 52–56 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing