Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coupling of agonist binding to channel gating in an ACh-binding protein linked to an ion channel


Neurotransmitter receptors from the Cys-loop superfamily couple the binding of agonist to the opening of an intrinsic ion pore in the final step in rapid synaptic transmission. Although atomic resolution structural data have recently emerged for individual binding1 and pore domains2, how they are linked into a functional unit remains unknown. Here we identify structural requirements for functionally coupling the two domains by combining acetylcholine (ACh)-binding protein, whose structure was determined at atomic resolution1, with the pore domain from the serotonin type-3A (5-HT3A) receptor. Only when amino-acid sequences of three loops in ACh-binding protein are changed to their 5-HT3A counterparts does ACh bind with low affinity characteristic of activatable receptors, and trigger opening of the ion pore. Thus functional coupling requires structural compatibility at the interface of the binding and pore domains. Structural modelling reveals a network of interacting loops between binding and pore domains that mediates this allosteric coupling process.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Design and structural model of receptor chimaeras.
Figure 2: ACh-activated currents through chimaeric receptors.
Figure 3: ACh-activated single-channel currents through chimaeric receptors at different membrane potentials.


  1. Brejc, K. et al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411, 269–276 (2001)

    Article  ADS  CAS  Google Scholar 

  2. Miyazawa, A., Fujiyoshi, Y. & Unwin, N. Structure and gating mechanism of the acetylcholine receptor pore. Nature 423, 949–955 (2003)

    Article  ADS  CAS  Google Scholar 

  3. Sine, S. M. The nicotinic receptor ligand binding domain. J. Neurobiol. 3, 431–446 (2002)

    Article  Google Scholar 

  4. Karlin, A. Emerging structure of the nicotinic acetylcholine receptors. Nature Rev. Neurosci. 3, 102–114 (2002)

    Article  CAS  Google Scholar 

  5. Changeux, J. P. & Edelstein, S. J. Allosteric receptors after 30 years. Neuron 21, 959–980 (1998)

    Article  CAS  Google Scholar 

  6. Grosman, C., Salamone, F., Sine, S. M. & Auerbach, A. The extracellular linker of muscle acetylcholine receptors is a gating control element. J. Gen. Physiol. 116, 327–339 (2000)

    Article  CAS  Google Scholar 

  7. Kash, T., Jenkins, A., Kelly, J., Trudell, J. & Harrison, N. L. Coupling of agonist binding to channel gating in the GABAA receptor. Nature 421, 272–275 (2003)

    Article  ADS  CAS  Google Scholar 

  8. Eisele, J. L. et al. Chimaeric nicotinic-serotonergic receptor combines distinct ligand binding and channel specificities. Nature 366, 479–483 (1993)

    Article  ADS  CAS  Google Scholar 

  9. Quiram, P. & Sine, S. M. Identification of residues in the neuronal α7 receptor that confer selectivity for conotoxin ImI. J. Biol. Chem. 273, 11001–11006 (1998)

    Article  CAS  Google Scholar 

  10. Kelley, S., Dunlop, J., Kirkness, E., Lambert, J. & Peters, J. A. A cytoplasmic region determines single-channel conductance in 5-HT3 receptors. Nature 424, 321–324 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Jackson, M. B. Perfection of a synaptic receptor: kinetics and energetics of the acetylcholine receptor. Proc. Natl Acad. Sci. USA 86, 2199–2203 (1989)

    Article  ADS  CAS  Google Scholar 

  12. Unwin, N. Acetylcholine receptor channel imaged in the open state. Nature 373, 37–43 (1995)

    Article  ADS  CAS  Google Scholar 

  13. Unwin, N., Miyazawa, A., Li, J. & Fujiyoshi, Y. Activation of nicotinic acetylcholine receptor involves a switch in conformation of the alpha subunits. J. Mol. Biol. 319, 1165–1176 (2002)

    Article  CAS  Google Scholar 

  14. Hansen, S. B. et al. Tryptophan fluorescence reveals conformational changes in the acetylcholine binding protein. J. Biol. Chem. 277, 41299–41302 (2002)

    Article  CAS  Google Scholar 

  15. Lee, B. S., Gunn, R. B. & Kopito, R. R. Functional differences among nonerythroid anion exchangers expressed in a transfected human cell line. J. Biol. Chem. 266, 11448–11454 (1991)

    CAS  PubMed  Google Scholar 

  16. Gao, F. et al. Curariform antagonists bind in different orientations to acetylcholine binding protein. J. Biol. Chem. 278, 23020–23026 (2003)

    Article  CAS  Google Scholar 

  17. Sine, S. M. Molecular dissection of subunit interfaces in the acetylcholine receptor: identification of residues that determine curare selectivity. Proc. Natl Acad. Sci. USA 90, 9436–9440 (1993)

    Article  ADS  CAS  Google Scholar 

  18. Pear, W. S., Nolan, G. P., Scott, M. L. & Baltimore, D. Production of high titer helper-free retroviruses by transient transfection. Proc. Natl Acad. Sci. USA 90, 8392–8396 (1993)

    Article  ADS  CAS  Google Scholar 

  19. Sine, S. M. & Taylor, P. Functional consequences of agonist-mediated state transitions in the cholinergic receptor. J. Biol. Chem. 254, 3315–3325 (1979)

    CAS  PubMed  Google Scholar 

  20. Prince, R. J. & Sine, S. M. Molecular dissection of subunit interfaces in the acetylcholine receptor: identification of residues that determine agonist selectivity. J. Biol. Chem. 271, 25770–25777 (1996)

    Article  CAS  Google Scholar 

  21. Wang, H.-L. et al. Acetylcholine receptor M3 domain: stereochemical and volume contributions to channel gating. Nature Neurosci. 2, 226–233 (1999)

    Article  CAS  Google Scholar 

  22. Sigworth, F. & Sine, S. M. Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys. J. 52, 1047–1054 (1987)

    Article  CAS  Google Scholar 

  23. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100 (1981)

    Article  CAS  Google Scholar 

  24. Liu, Y. & Dilger, J. P. Opening rate of acetylcholine receptor channels. Biophys. J. 60, 424–432 (1991)

    Article  ADS  CAS  Google Scholar 

  25. Spitzmaul, G., Dilger, J. P. & Bouzat, C. The noncompetitive inhibitor quinacrine modifies the desensitization kinetics of muscle acetylcholine receptors. Mol. Pharmacol. 60, 235–243 (2001)

    Article  CAS  Google Scholar 

  26. Sali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993)

    Article  CAS  Google Scholar 

  27. Sine, S. M., Wang, H.-L. & Bren, N. Lysine scanning mutagenesis delineates structural model of the nicotinic receptor ligand binding domain. J. Biol. Chem. 277, 29210–29223 (2002)

    Article  CAS  Google Scholar 

Download references


This work was supported by grants from the National Institutes of Health, UNS, ANPCyT and F. Antorchas, Argentina.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Steven M. Sine.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bouzat, C., Gumilar, F., Spitzmaul, G. et al. Coupling of agonist binding to channel gating in an ACh-binding protein linked to an ion channel. Nature 430, 896–900 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing