Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers

Abstract

The peptide GsMTx4, isolated from the venom of the tarantula Grammostola spatulata, is a selective inhibitor of stretch-activated cation channels (SACs)1. The mechanism of inhibition remains unknown; but both GsMTx4 and its enantiomer, enGsMTx4, modify the gating of SACs, thus violating a trademark of the traditional lock-and-key model of ligand–protein interactions. Suspecting a bilayer-dependent mechanism, we examined the effect of GsMTx4 and enGsMTx4 on gramicidin A (gA) channel gating2. Both peptides are active, and the effect increases with the degree of hydrophobic mismatch between bilayer thickness and channel length, meaning that GsMTx4 decreases the energy required to deform the boundary lipids adjacent to the channel. GsMTx4 decreases inward SAC single-channel currents but has no effect on outward currents, suggesting it is located within a Debye length of the outer vestibule of the SACs, but significantly farther from the inner vestibule. Likewise, GsMTx4 decreases gA single-channel currents. Our results suggest that modulation of membrane proteins by amphipathic peptides—mechanopharmacology—involves not only the protein itself but also the surrounding lipids. The surprising efficacy of the d form of GsMTx4 peptide has important therapeutic implications, because d peptides are not hydrolysed by endogenous proteases and may be administered orally.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: GsMTx4 and its possible bilayer-modifying effects.
Figure 2: GsMTx4 increases the pipette pressure (membrane tension) required for activation and is adjacent to the channel.
Figure 3: GsMTx4 and enGsMTx4 both inhibit SACs.
Figure 4: Effect of GsMTx4 on gA channels.

References

  1. Suchyna, T. M. et al. Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J. Gen. Physiol. 115, 583–598 (2000)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Andersen, O. S. et al. Ion channels as tools to monitor lipid bilayer-membrane protein interactions: gramicidin channels as molecular force transducers. Methods Enzymol. 294, 208–224 (1999)

    CAS  PubMed  Article  Google Scholar 

  3. Patel, A. J. et al. Inhalational anesthetics activate two-pore-domain background K+ channels. Nature Neurosci. 2, 422–426 (1999)

    CAS  PubMed  Article  Google Scholar 

  4. Patel, A. J., Lazdunski, M. & Honore, E. Lipid and mechano-gated 2P domain K+ channels. Curr. Opin. Cell Biol. 13, 422–427 (2001)

    CAS  PubMed  Article  Google Scholar 

  5. Perozo, E., Kloda, A., Cortes, D. M. & Martinac, B. Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nature Struct. Biol. 9, 696–703 (2002)

    CAS  PubMed  Article  Google Scholar 

  6. Lundbæk, J. A. & Andersen, O. S. Lysophospholipids modulate channel function by altering the mechanical properties of lipid bilayers. J. Gen. Physiol. 104, 645–673 (1994)

    PubMed  Article  Google Scholar 

  7. Hwang, T. C., Koeppe, R. E. II & Andersen, O. S. Genistein can modulate channel function by a phosphorylation-independent mechanism: importance of hydrophobic mismatch and bilayer mechanics. Biochemistry 42, 13646–13658 (2003)

    CAS  PubMed  Article  Google Scholar 

  8. Goulian, M. et al. Gramicidin channel kinetics under tension. Biophys. J. 74, 328–337 (1998)

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Oswald, R. E., Suchyna, T. M., McFeeters, R., Gottlieb, P. & Sachs, F. Solution structure of peptide toxins that block mechanosensitive ion channels. J. Biol. Chem. 277, 34443–34450 (2002)

    CAS  PubMed  Article  Google Scholar 

  10. Ostrow, K. L. et al. cDNA sequence and in vitro folding of GsMTx4, a specific peptide inhibitor of mechanosensitive channels. Toxicon 42, 263–274 (2003)

    CAS  PubMed  Article  Google Scholar 

  11. Markin, V. S. & Sachs, F. Thermodynamics of mechanosensitivity. Physical Biol. (in the press)

  12. Suchyna, T. & Sachs, F. Dynamic regulation of mechanosensitive channels: capacitance used to monitor patch tension in real time. Phys. Biol. 1, 1–18 (2004)

    ADS  CAS  PubMed  Article  Google Scholar 

  13. Ladokhin, A. S., Jayasinghe, S. & White, S. H. How to measure and analyze tryptophan fluorescence in membranes properly, and why bother? Anal. Biochem. 285, 235–245 (2000)

    CAS  PubMed  Article  Google Scholar 

  14. White, S. H., Wimley, W. C., Ladokhin, A. S. & Hristova, K. Protein folding in membranes: determining energetics of peptide-bilayer interactions. Methods Enzymol. 295, 62–87 (1998)

    CAS  PubMed  Article  Google Scholar 

  15. Kim, J., Mosior, M., Chung, L. A., Wu, H. & McLaughlin, S. Binding of peptides with basic residues to membranes containing acidic phospholipids. Biophys. J. 60, 135–148 (1991)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Lundbæk, J. A. & Andersen, O. S. Spring constants for channel-induced lipid bilayer deformations—estimates using gramicidin channels. Biophys. J. 76, 889–895 (1999)

    PubMed  PubMed Central  Article  Google Scholar 

  17. O'Connell, A. M., Koeppe, R. E. II & Andersen, O. S. Kinetics of gramicidin channel formation in lipid bilayers: transmembrane monomer association. Science 250, 1256–1259 (1990)

    ADS  CAS  PubMed  Article  Google Scholar 

  18. Elliott, J. R., Needham, D., Dilger, J. P. & Haydon, D. A. The effects of bilayer thickness and tension on gramicidin single-channel lifetime. Biochim. Biophys. Acta 735, 95–103 (1983)

    CAS  PubMed  Article  Google Scholar 

  19. Huang, H. W. Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime. Biophys. J. 50, 1061–1070 (1986)

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Koeppe, R. E. II et al. On the helix sense of gramicidin A single channels. Proteins 12, 49–62 (1992)

    CAS  PubMed  Article  Google Scholar 

  21. Trudelle, Y. & Heitz, F. Synthesis and characterization of Tyr(Bzl)9,11,13,15 and Tyr9,11,13,15 gramicidin A. Int. J. Pept. Protein Res. 30, 163–169 (1987)

    CAS  PubMed  Article  Google Scholar 

  22. Lundbæk, J. A. et al. Regulation of sodium channel function by bilayer elasticity the importance of hydrophobic coupling: effects of micelle-forming amphiphiles and cholesterol. J. Gen. Physiol. 123, 599–621 (2004)

    PubMed  PubMed Central  Article  Google Scholar 

  23. Bode, F., Sachs, F. & Franz, M. R. Tarantula peptide inhibits atrial fibrillation. Nature 409, 35–36 (2001)

    ADS  CAS  PubMed  Article  Google Scholar 

  24. Lehtonen, J. Y. & Kinnunen, P. K. Phospholipase A2 as a mechanosensor. Biophys. J. 68, 1888–1894 (1995)

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Gudi, S., Nolan, J. P. & Frangos, J. A. Modulation of GTPase activity of G proteins by fluid shear stress and phospholipid composition. Proc. Natl Acad. Sci. USA 95, 2515–2519 (1998)

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Laitko, U. & Morris, C. E. Membrane tension accelerates rate-limiting voltage-dependent activation and slow inactivation steps in a Shaker channel. J. Gen. Physiol. 123, 135–154 (2004)

    PubMed  PubMed Central  Article  Google Scholar 

  27. Greathouse, D. V., Koeppe, R. E. II, Providence, L. L., Shobana, S. & Andersen, O. S. Design and characterization of gramicidin channels. Methods Enzymol. 294, 525–550 (1999)

    CAS  PubMed  Article  Google Scholar 

  28. Andersen, O. S. Ion movement through gramicidin A channels. Single-channel measurements at very high potentials. Biophys. J. 41, 119–133 (1983)

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Bett, G. C. & Sachs, F. Activation and inactivation of mechanosensitive currents in the chick heart. J. Membr. Biol. 173, 237–254 (2000)

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We would like to thank J. Niggel (SUNY) and A. Ladokhin (UC Irvine) for the fluorescence data, and M. Teeling for the tissue culture. This work is supported by NIH grants to O.S.A. and F.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf S. Andersen.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Suchyna, T., Tape, S., Koeppe, R. et al. Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers. Nature 430, 235–240 (2004). https://doi.org/10.1038/nature02743

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02743

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing