Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey


Although jawless vertebrates are apparently capable of adaptive immune responses, they have not been found to possess the recombinatorial antigen receptors shared by all jawed vertebrates. Our search for the phylogenetic roots of adaptive immunity in the lamprey has instead identified a new type of variable lymphocyte receptors (VLRs) composed of highly diverse leucine-rich repeats (LRR) sandwiched between amino- and carboxy-terminal LRRs. An invariant stalk region tethers the VLRs to the cell surface by means of a glycosyl-phosphatidyl-inositol anchor. To generate rearranged VLR genes of the diversity necessary for an anticipatory immune system, the single lamprey VLR locus contains a large bank of diverse LRR cassettes, available for insertion into an incomplete germline VLR gene. Individual lymphocytes express a uniquely rearranged VLR gene in monoallelic fashion. Different evolutionary strategies were thus used to generate highly diverse lymphocyte receptors through rearrangement of LRR modules in agnathans (jawless fish) and of immunoglobulin gene segments in gnathostomes (jawed vertebrates).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Lamprey leukocytes and VLRs.
Figure 2: Diversity of VLRs from two lampreys.
Figure 3: Graphic representation of protein divergence among 112 VLR diversity regions PCR amplified from 13 individual lampreys.
Figure 4: Sea lamprey genome harbours a single VLR locus.
Figure 5: The VLR locus.


  1. 1

    Litman, G. W., Anderson, M. K. & Rast, J. P. Evolution of antigen binding receptors. Annu. Rev. Immunol. 17, 109–147 (1999)

    CAS  Article  Google Scholar 

  2. 2

    Flajnik, M. F. & Kasahara, M. Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system. Immunity 15, 351–362 (2001)

    CAS  Article  Google Scholar 

  3. 3

    Flajnik, M. F. Comparative analyses of immunoglobulin genes: surprises and portents. Nature Rev. Immunol. 2, 688–698 (2002)

    CAS  Article  Google Scholar 

  4. 4

    Forey, P. L. & Janvier, P. Agnathans and the origin of jawed vertebrates. Nature 361, 129–134 (1993)

    ADS  Article  Google Scholar 

  5. 5

    Finstad, J. & Good, R. A. The evolution of the immune response. III. Immunologic responses in the lamprey. J. Exp. Med. 120, 1151–1167 (1964)

    CAS  Article  Google Scholar 

  6. 6

    Marchalonis, J. J. & Edelman, G. M. Phylogenetic origins of antibody structure. 3. Antibodies in the primary immune response of the sea lamprey, Petromyzon marinus. J. Exp. Med. 127, 891–914 (1968)

    CAS  Article  Google Scholar 

  7. 7

    Litman, G. W. et al. The evolution of the immune response. VIII. Structural studies of the lamprey immunoglobulin. J. Immunol. 105, 1278–1285 (1970)

    CAS  PubMed  Google Scholar 

  8. 8

    Pollara, B., Litman, G. W., Finstad, J., Howell, J. & Good, R. A. The evolution of the immune response. VII. Antibody to human “O” cells and properties of the immunoglobulin in lamprey. J. Immunol. 105, 738–745 (1970)

    CAS  PubMed  Google Scholar 

  9. 9

    Good, R. A., Finstad, J. & Litman, G. W. in The Biology of lampreys II: Immunology (eds Hardisty, M. V. & Potter, I. C.) 405–432 (Academic, London, 1972)

    Google Scholar 

  10. 10

    Hagen, M., Filosa, M. F. & Youson, J. H. The immune response in adult sea lamprey (Petromyzon marinus L.): the effect of temperature. Comp. Biochem. Physiol. 82, 207–210 (1985)

    CAS  Article  Google Scholar 

  11. 11

    Perey, D. Y., Finstad, J., Pollara, B. & Good, R. A. Evolution of the immune response. VI. First and second set skin homograft rejections in primitive fishes. Lab. Invest. 19, 591–597 (1968)

    CAS  PubMed  Google Scholar 

  12. 12

    Cooper, A. J. in Ammocoete Lymphoid Cell Populations In vitro. 4th Leukocyte Culture Conference (ed. McIntyre, O. R.) 137–147 (Appleton Century-Crofts, New York, 1971)

    Google Scholar 

  13. 13

    Piavis, G. W. & Hiatt, J. L. Blood cell lineage in the sea lamprey Petromyzon marinus (Pisces: Petromyzontidae). Copeia 4, 722–728 (1971)

    Article  Google Scholar 

  14. 14

    Fujii, T. Electron microscopy of the leukocytes of the typhlosole in ammocoetes, with special attention to the antibody-producing cells. J. Morphol. 173, 87–100 (1982)

    CAS  Article  Google Scholar 

  15. 15

    Ardavin, C. F. & Zapata, A. Ultrastructure and changes during metamorphosis of the lympho-hemopoietic tissue of the larval anadromous sea lamprey Petromyzon marinus. Dev. Comp. Immunol. 11, 79–93 (1987)

    CAS  Article  Google Scholar 

  16. 16

    Mayer, W. E. et al. Isolation and characterization of lymphocyte-like cells from a lamprey. Proc. Natl Acad. Sci. USA 99, 14350–14355 (2002)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Mayer, W. E., O'Huigin, C., Tichy, H., Terzic, J. & Saraga-Babic, M. Identification of two Ikaros-like transcription factors in lamprey. Scand. J. Immunol. 55, 162–170 (2002)

    CAS  Article  Google Scholar 

  18. 18

    Haire, R. N., Miracle, A. L., Rast, J. P. & Litman, G. W. Members of the Ikaros gene family are present in early representative vertebrates. J. Immunol. 165, 306–312 (2000)

    CAS  Article  Google Scholar 

  19. 19

    Shintani, S. et al. Do lampreys have lymphocytes? The Spi evidence. Proc. Natl Acad. Sci. USA 97, 7417–7422 (2000)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Anderson, M. K., Sun, X., Miracle, A. L., Litman, G. W. & Rothenberg, E. V. Evolution of hematopoiesis: three members of the PU.1 transcription factor family in a cartilaginous fish, Raja eglanteria. Proc. Natl Acad. Sci. USA 98, 553–558 (2001)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Azumi, K. et al. Genomic analysis of immunity in a urochordate and the emergence of the vertebrate immune system: “waiting for Godot”. Immunogenetics 55, 570–581 (2003)

    CAS  Article  Google Scholar 

  22. 22

    Uinuk-Ool, T. S. et al. Lamprey lymphocyte-like cells express homologs of genes involved in immunologically relevant activities of mammalian lymphocytes. Proc. Natl Acad. Sci. USA 99, 14356–14361 (2002)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Uinuk-Ool, T. S. et al. Identification and characterization of a TAP-family gene in the lamprey. Immunogenetics 55, 38–48 (2003)

    CAS  PubMed  Google Scholar 

  24. 24

    Schwede, T., Diemand, A., Guex, N. & Peitsch, M. V. Protein structure computing in the genomic era. Res. Microbiol. 151, 107–112 (2000)

    CAS  Article  Google Scholar 

  25. 25

    Bell, J. K. et al. Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol. 24, 528–533 (2003)

    CAS  Article  Google Scholar 

  26. 26

    Bryan, M. B., Libants, S. V., Warrillow, J. A., Li, W. & Scribner, K. T. Polymorphic microsatellite markers for the landlocked sea lamprey, Petromyzon marinus. Conserv. Genet. 4, 113–116 (2003)

    CAS  Article  Google Scholar 

  27. 27

    Beutler, B. Innate immunity: an overview. Mol. Immunol. 40, 845–859 (2004)

    CAS  Article  Google Scholar 

  28. 28

    Landmann, R., Müller, B. & Zimmerli, W. CD14, new aspects of ligand and signal diversity. Microbes Infect. 2, 295–304 (2000)

    CAS  Article  Google Scholar 

  29. 29

    Chamaillard, M., Girardin, S. E., Viala, J. & Philpott, D. J. Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation. Cell. Microbiol. 5, 581–592 (2003)

    CAS  Article  Google Scholar 

  30. 30

    Jones, D. A. & Takemoto, D. Plant innate immunity—direct and indirect recognition of general and specific pathogen-associated molecules. Curr. Opin. Immunol. 16, 48–62 (2004)

    CAS  Article  Google Scholar 

  31. 31

    Ikezawa, H. Glycosylphosphatidylinositol (GPI)-anchored proteins. Biol. Pharm. Bull. 25, 409–417 (2002)

    CAS  Article  Google Scholar 

  32. 32

    Kaufman, J. The origins of the adaptive immune system: whatever next? Nature Immunol. 3, 1124–1125 (2002)

    CAS  Article  Google Scholar 

  33. 33

    Thompson, C. B. & Nieman, P. E. Somatic diversification of the chicken immunoglobulin light chain gene is limited to the rearranged variable gene segment. Cell 48, 369–378 (1987)

    CAS  Article  Google Scholar 

  34. 34

    Reynaud, C. A., Anquez, V., Grimal, H. & Weill, J. C. A hyper conversion mechanism generates the chicken light chain preimmune repertoire. Cell 48, 379–388 (1987)

    CAS  Article  Google Scholar 

  35. 35

    Hamrick, T. S., Dempsey, J. A., Cohen, M. S. & Cannon, J. G. Antigenic variation of gonococcal pilin expression in vivo: analysis of the strain FA1090 pilin repertoire and identification of the pilS gene copies recombining with pilE during experimental human infection. Microbiol. 147, 839–849 (2001)

    CAS  Article  Google Scholar 

  36. 36

    Wang, D., Botkin, D. J. & Norris, S. J. Characterization of the vls antigenic variation loci of the Lyme disease spirochaetes Borrelia garinii Ip90 and Borrelia afzelii ACAI. Mol. Microbiol. 47, 1407–1417 (2003)

    CAS  Article  Google Scholar 

  37. 37

    Berriman, M. et al. The architecture of variant surface glycoprotein gene expression sites in Trypanosoma brucei. Mol. Biochem. Parasitol. 122, 131–140 (2002)

    CAS  Article  Google Scholar 

  38. 38

    Duffy, M. F., Reeder, J. C. & Brown, G. V. Regulation of antigenic variation in Plasmodium falciparum: censoring freedom of expression? Trends Parasitol. 19, 121–124 (2003)

    CAS  Article  Google Scholar 

  39. 39

    Nash, T. E. Surface antigenic variation in Giardia lamblia. Mol. Microbiol. 45, 585–590 (2002)

    CAS  Article  Google Scholar 

  40. 40

    Schluter, S. F., Bernstein, R. M., Bernstein, H. & Marchalonis, J. J. ‘Big Bang’ emergence of the combinatorial immune system. Dev. Comp. Immunol. 23, 107–111 (1999)

    CAS  Article  Google Scholar 

  41. 41

    Amemiya, C. T., Ota, T. & Litman, G. W. in Nonmammalian Genomic Analysis: A Practical Guide. Construction of P1 Artificial Chromosome (PAC) Libraries from Lower Vertebrates (eds Birren, B. & Lai, E.) 223–256 (Academic, New York, 1996)

    Google Scholar 

  42. 42

    Kumar, S., Tamura, K., Jakobsen, I. B. & Nei, M. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17, 1244–1245 (2001)

    CAS  Article  Google Scholar 

Download references


We thank R. Bergstedt and W. Swink of the Hammond Bay Biological Station for assistance with lamprey biology and supply; G. Hines and the UAB Animal Resources Program staff for attending the lampreys; Y. Kubagawa for VLR sequencing; P. Burrows, H. Schroeder and E. Sorscher for discussion; and A. Brookshire for manuscript preparation. The work was supported by grants from the National Institutes of Health and the National Science Foundation. M.D.C. is an Investigator of the Howard Hughes Medical Institute and Z.P. was a recipient of the Cottrell postdoctoral award.

Author information



Corresponding author

Correspondence to Max D. Cooper.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1

Multiple alignment of 22 predicted VLR proteins from EST clones. (DOC 3785 kb)

Supplementary Figure 2

ORF of a representative VLR. Nucleotide and predicted amino-acid sequence from clone LyEST2913, with indication of LRR structural motifs and their correspondence to exons 2-4 in the germline VLR, and the position of the stalk domain and GPI cleavage site. (DOC 2209 kb)

Supplementary Figure 3

Multiple alignment of 112 VLR diversity regions PCR amplified from 13 lampreys. Genomic and RT–PCR clones from immunostimulated and unstimulated lampreys, including sorted single lymphocytes. Consists of top and bottom halves. (DOC 3991 kb)

Supplementary Table 1

PCR primers used in this study. Sequence and position of primers are provided for cDNA clone LyEST2913 (AY578059) and for the genomic VLR contig (AY577941). (DOC 25 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pancer, Z., Amemiya, C., Ehrhardt, G. et al. Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430, 174–180 (2004).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.