Prediction of Emperor-Hawaii seamount locations from a revised model of global plate motion and mantle flow

Abstract

The bend in the Hawaiian-Emperor seamount chain is a prominent feature usually attributed to a change in Pacific plate motion 47 Myr ago. However, global plate motion reconstructions fail to predict the bend. Here we show how the geometry of the Hawaiian-Emperor chain and other hotspot tracks can be explained when we combine global plate motions with intraplate deformation and movement of hotspot plumes through distortion by global mantle flow. Global mantle flow models predict a southward motion of the Hawaiian hotspot. This, in combination with a plate motion reconstruction connecting Pacific and African plates through Antarctica, predicts the Hawaiian track correctly since the date of the bend, but predicts the chain to be too far west before it. But if a reconstruction through Australia and Lord Howe rise is used instead, the track is predicted correctly back to 65 Myr ago, including the bend. The difference between the two predictions indicates the effect of intraplate deformation not yet recognized or else not recorded on the ocean floor. The remaining misfit before 65 Myr ago can be attributed to additional intraplate deformation of similar magnitude.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: North–south mantle cross-section at 155° W.
Figure 2: Computed hotspot motion and tracks for the moving-source model.
Figure 3: Diagram showing relative plate motion chains considered for times older than chron 20 (43 Myr ago).
Figure 4: South Pacific reconstructions at chron 31y (68 Myr ago).
Figure 5: Age progression along hotspot tracks.

References

  1. 1

    Morgan, W. J. Deep mantle convection plumes and plate motions. Am. Assoc. Petrol. Geol. Bull. 56, 203–213 (1972)

    Google Scholar 

  2. 2

    Molnar, P. & Stock, J. Relative motions of hotspots in the Pacific, Atlantic and Indian oceans since late Cretaceous time. Nature 327, 587–591 (1987)

    ADS  Article  Google Scholar 

  3. 3

    Tarduno, J. A. et al. The Emporer Seamounts: A record of southward motion of the Hawaiian hotspot plume in Earth's mantle. Science 301, 1064–1069 (2003)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Besse, J. & Courtillot, V. Apparent and true polar wander and the geometry of the geomagnetic field in the last 200 million years. J. Geophys. Res. 107, 2300 doi:10.1029/2000JB000050 (2002)

    ADS  Article  Google Scholar 

  5. 5

    Clague, D. A. & Dalrymple, G. B. in The Eastern Pacific Ocean and Hawaii, vol. N of The Geology of North America (eds Winterer, E. L., Hussong, D. M. & Decker, R. W.) 188–217 (GSA, Boulder, CO, 1989)

    Google Scholar 

  6. 6

    Sharp, W. D. & Clague, D. A. An older, slower Hawaii-Emperor bend. Eos 83(Fall Meet. Suppl.) Abstract T61C-04 (2002)

  7. 7

    Steinberger, B. Plumes in a convecting mantle: models and observations for individual hotspots. J. Geophys. Res. 105, 11127–11152 (2000)

    ADS  Article  Google Scholar 

  8. 8

    Courtillot, V., Davaille, A., Besse, J. & Stock, J. Three distinct types of hotspots in the Earth's mantle. Earth Planet. Sci. Lett. 205, 295–308 (2003)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Steinberger, B. Motion of the Easter Island hotspot relative to hotspots on the Pacific plate. Geochem. Geophys. Geosyst. 3, 8503 doi:10.1029/2002GC000334 (2002)

    ADS  Article  Google Scholar 

  10. 10

    Vink, G. E. A hotspot model for Iceland and the Vøring Plateau. J. Geophys. Res. 89, 9949–9959 (1984)

    ADS  Article  Google Scholar 

  11. 11

    Hofmann, C. et al. Timing of the Ethiopian flood basalt event and implications for plume birth and global change. Nature 389, 838–841 (1997)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Rochette, P. et al. Magnetostratigraphy and timing of the Oligocene Ethiopian traps. Earth Planet. Sci. Lett. 164, 497–510 (1998)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Coulie, E. et al. Comparative K-Ar and Ar/Ar dating of Ethiopian and Yemenite Oligocene volcanism: Implications for timing and duration of the Ethiopian Traps. Earth Planet. Sci. Lett. 206, 477–492 (2003)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Courtillot, V. & Renne, P. On the ages of flood basalt events. C.R. Geosci. 335, 113–140 (2003)

    ADS  Article  Google Scholar 

  15. 15

    Steinberger, B. & O'Connell, R. J. Advection of plumes in mantle flow: implications for hotspot motion, mantle viscosity and plume distribution. Geophys. J. Int. 132, 412–434 (1998)

    ADS  Article  Google Scholar 

  16. 16

    Steinberger, B. & O'Connell, R. J. in The History and Dynamics of Global Plate Motions, vol. 121 of Geophysical Monograph Series (eds Richards, M. A., Gordon, R. G. & van der Hilst, R. D.) 377–398 (AGU, Washington DC, 2000)

    Google Scholar 

  17. 17

    Antretter, M., Riisager, P., Hall, S., Zhao, X. & Steinberger, B. in Origin and Evolution of the Ontong Java Plateau (eds Fitton, G., Mahoney, J., Wallace, P. & Saunders, A.) Geol. Soc. Lond. Spec. Pub. 229, 21–30 (2004)

    Google Scholar 

  18. 18

    Cande, S. C., Raymond, C. A., Stock, J. & Haxby, W. F. Geophysics of the Pitman Fracture Zone and Pacific–Antarctic plate motions during the Cenozoic. Science 270, 947–953 (1995)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Cande, S. C., Stock, J. M., Mueller, R. D. & Ishihara, T. Cenozoic motion between East and West Antarctica. Nature 404, 145–150 (2000)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Nankivell, A. P. Tectonic Evolution of the Southern Ocean Between Antarctica, South America and Africa over the Past 84 Ma Thesis, Univ. Oxford (1997)

    Google Scholar 

  21. 21

    Tikku, A. A. & Cande, S. C. On the fit of Broken Ridge and Kerguelen Plateau. Earth Planet. Sci. Lett. 180, 117–132 (2000)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Gaina, C. et al. The tectonic history of the Tasman Sea; a puzzle with 13 pieces. J. Geophys. Res. 103, 12413–12433 (1998)

    ADS  Article  Google Scholar 

  23. 23

    Sutherland, R. The Australia–Pacific boundary and Cenozoic plate motions in the SW Pacific; some constraints from Geosat data. Tectonics 14, 819–831 (1995)

    ADS  Article  Google Scholar 

  24. 24

    Wood, R. A., Lamarche, G., Herzer, R. H., Delteil, J. & Davy, B. Paleogene seafloor spreading in the southeast Tasman Sea. Tectonics 15, 966–975 (1996)

    ADS  Article  Google Scholar 

  25. 25

    King, P. R. & Thrasher, G. P. Cretaceous–Cenozoic Geology and Petroleum Systems of the Taranaki Basin, New Zealand (Institute of Geological and Nuclear Sciences Monograph 13, Lower Hutt, New Zealand, 1996)

    Google Scholar 

  26. 26

    Heinemann, J. et al. Constraints on the proposed Marie Byrd Land–Bellingshausen plate boundary from seismic reflection data. J. Geophys. Res. 104, 25321–25330 (1999)

    ADS  Article  Google Scholar 

  27. 27

    Raymond, C. A., Stock, J. M. & Cande, S. C. in The History and Dynamics of Global Plate Motions, vol. 121 of Geophysical Monograph Series (eds Richards, M. A., Gordon, R. G. & van der Hilst, R. D.) 359–376 (AGU, Washington DC, 2000)

    Google Scholar 

  28. 28

    Sleep, N. H. Ridge-crossing mantle plumes and gaps in tracks. Geochem. Geophys. Geosyst. 3, 8505 doi:10.1029/2001GC000290 (2002)

    ADS  Google Scholar 

  29. 29

    Ebinger, C. & Sleep, N. Cenozoic magmatism throughout east Africa resulting from impact of one large plume. Nature 395, 788–791 (1998)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Behrendt, J. C. et al. Geophysical studies of the west Antarctic rift arm. Tectonics 10, 1257–1273 (1991)

    ADS  Article  Google Scholar 

  31. 31

    Cooper, A. K., Barker, P. F. & Brancolini, G. E. Geology and Seismic Stratigraphy of the Antarctic margin, vol. 68 of Antarctic Research Series (AGU, Washington DC, 1995)

    Google Scholar 

  32. 32

    McCarron, J. J. & Larter, R. D. Late Cretaceous to early Tertiary subduction history of the Antarctic Peninsula. J. Geol. Soc. Lond. 155, 255–268 (1998)

    Article  Google Scholar 

  33. 33

    Storey, B. C. & Nell, P. A. R. Role of strike-slip faulting in the tectonic evolution of the Antarctic Peninsula. J. Geol. Soc. Lond. 145, 333–337 (1988)

    Article  Google Scholar 

  34. 34

    Marks, K. M. & Stock, J. M. Early Tertiary gravity field reconstructions of the Southwest Pacific. Earth Planet. Sci. Lett. 152, 267–274 (1997)

    ADS  CAS  Article  Google Scholar 

  35. 35

    Sutherland, R. Basement geology and tectonic development of the greater New Zealand region: an interpretation from regional magnetic data. Tectonophysics 308, 341–362 (1999)

    ADS  Article  Google Scholar 

  36. 36

    Laird, M. G. in South Pacific Sedimentary Basins, vol. 2 of Sedimentary Basins of the World (ed. Ballance, P. F.) 37–49 (Elsevier, Amsterdam, 1993)

    Google Scholar 

  37. 37

    Cook, R. A., Sutherland, R. & Zhu, H. Cretaceous–Cenozoic Geology and Petroleum Systems of the Great South Basin, New Zealand (Institute of Geological and Nuclear Sciences Monograph 20, Lower Hutt, New Zealand, 1999)

    Google Scholar 

  38. 38

    Stock, J. & Molnar, P. Revised history of early Tertiary plate motion in the south-west Pacific. Nature 325, 495–499 (1987)

    ADS  Article  Google Scholar 

  39. 39

    Dick, H. J. B., Lin, J. & Schouten, H. An ultraslow-spreading class of ocean ridge. Nature 426, 405–412 (2003)

    ADS  CAS  Article  Google Scholar 

  40. 40

    Molnar, P. Continental tectonics in the aftermath of plate tectonics. Nature 335, 131–137 (1988)

    ADS  Article  Google Scholar 

  41. 41

    Hall, C. E., Gurnis, M., Sdrolias, M., Lavier, L. L. & Mueller, R. D. Catastrophic initiation of subduction following forced convergence across fracture zones. Earth Planet. Sci. Lett. 212, 15–30 (2003)

    ADS  CAS  Article  Google Scholar 

  42. 42

    Zatman, S., Gordon, R. G. & Richards, M. A. Analytic models for the dynamics of diffuse oceanic plate boundaries. Geophys. J. Int. 145, 145–156 (2001)

    ADS  Article  Google Scholar 

  43. 43

    Wessel, P. & Smith, W. H. F. Free software helps map and display data. Eos 72, 441 (1991)

    ADS  Article  Google Scholar 

  44. 44

    Sandwell, D. T. & Smith, W. H. F. Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. J. Geophys. Res. 102, 10039–10054 (1997)

    ADS  Article  Google Scholar 

  45. 45

    Watts, A. B., Weissel, J. K., Duncan, R. A. & Larson, R. L. Origin of the Louisville Ridge and its relationship to the Eltanin Fracture Zone System. J. Geophys. Res. 93, 3051–3077 (1988)

    ADS  Article  Google Scholar 

  46. 46

    Koppers, A. A. P., Duncan, R. A. & Steinberger, B. The implications of a non-linear 40Ar/39Ar age progression along the Louisville seamount trail for models of fixed and moving hotspots. Geochem. Geophys. Geosyst. 5 doi:10.1029/2003GC000671 (2004)

  47. 47

    Duncan, R. A. & Hargraves, R. B. 40Ar/39Ar geochronology of basement rocks from the Mascarene Plateau, Chagos Bank and the Maldive Ridge. Proc. Ocean Drill. Program Sci. Res. 115, 43–51 (1990)

    Google Scholar 

  48. 48

    Hofmann, C., Féraud, G. & Courtillot, V. 40Ar/39Ar dating of mineral separates and whole rocks from the Western Ghats lava pile: further constraints on the duration and age of the Deccan Traps. Earth Planet. Sci. Lett. 180, 13–27 (2000)

    ADS  CAS  Article  Google Scholar 

  49. 49

    O'Connor, J. M. & le Roex, A. P. South Atlantic hot spot-plume systems: 1. Distribution of volcanism in time and space. Earth Planet. Sci. Lett. 113, 343–364 (1992)

    ADS  Article  Google Scholar 

  50. 50

    O'Connor, J. M. & Duncan, R. A. Evolution of the Walvis Ridge – Rio Grande Rise hot-spot system: Implications for African and South American plate motions over plumes. J. Geophys. Res. 95, 17475–17502 (1990)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank P. Molnar, J. Stock, T.H. Torsvik and R.A. Duncan for comments on the manuscript, and N. Sleep for a review. R.S. was supported by the NZ Foundation for Research Science and Technology, the Marsden Fund, and a Caltech Visiting Associate award. R.J.O. received support from the NSF.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bernhard Steinberger.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Information

This contains: Supplementary Methods (a more detailed description of the computation of mantle flow and resulting hotspot motion), Supplementary Discussion (on the relation between the stress field in Antarctica inferred from the mantle flow model and the Antarctic deformation inferred from our plate chain model 2), references for the above sections, Supplementary Table S1 (relative plate motions in the Antarctic-Australian region), Supplementary Figure S1 (referred to only in the Supplementary Methods) and Supplementary Figures S2 and S3 (referred to only in the Supplementary Discussion). (PDF 152 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Steinberger, B., Sutherland, R. & O'Connell, R. Prediction of Emperor-Hawaii seamount locations from a revised model of global plate motion and mantle flow. Nature 430, 167–173 (2004). https://doi.org/10.1038/nature02660

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.