Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genomes for medicine

Abstract

We have the human genome sequence. It is freely available, accurate and nearly complete. But is the genome ready for medicine? The new resource is already changing genetic research strategies to find information of medical value. Now we need high-quality annotation of all the functionally important sequences and the variations within them that contribute to health and disease. To achieve this, we need more genome sequences, systematic experimental analyses, and extensive information on human phenotypes. Flexible and user-friendly access to well-annotated genomes will create an environment for innovation, and the potential for unlimited use of sequencing in biomedical research and practice.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Bentley, D. R. Genomic sequence information should be released immediately and freely in the public domain. Science 274, 533–534 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Guyer, M. Statement on the rapid release of genomic DNA sequence. Genome Res. 8, 413 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

  4. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Rogers, J. The finished sequence of Homo sapiens. Cold Spring Harb. Symp. Quant. Biol. 68 (in the press).

  6. Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

  7. Rat Genome Project Sequencing Consortium. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428, 493–521 (2004).

  8. Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

    Article  PubMed  Google Scholar 

  9. The C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998).

  10. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

  11. Blattner, F. R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Fleischmann, R. D. et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Watson, J. D. & Crick, F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Kruglyak, L. & Nickerson, D. A. Variation is the spice of life. Nature Genet. 27, 234–236 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. The International SNP Map Working Group. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409, 928–933 (2001).

  17. Dunham, A. et al. The DNA sequence and analysis of human chromosome 13. Nature 428, 522–528 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. The International HapMap Consortium. The International HapMap Project. Nature 426, 789–796 (2003).

  19. Druker, B. J. Imatinib alone and in combination for chronic myeloid leukemia. Semin. Hematol. 40, 50–58 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Aiuti, A., Ficara, F., Cattaneo, F., Bordignon, C. & Roncarolo, M. G. Gene therapy for adenosine deaminase deficiency. Curr. Opin. Allergy Clin. Immunol. 3, 461–466 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Hacein-Bey-Abina, S. et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 348, 255–256 (2003).

    Article  PubMed  Google Scholar 

  22. Risch, N. J. Searching for genetic determinants in the new millennium. Nature 405, 847–856 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Dean, M. et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 273, 1856–1862 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Ozaki, K. et al. Functional SNPs in the lymphotoxin-α gene that are associated with susceptibility to myocardial infarction. Nature Genet. 32, 650–654 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Van Dellen, A. & Hannan, A. J. Genetic and environmental factors in the pathogenesis of Huntington's disease. Neurogenetics 5, 9–17 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Georgiou-Karistianis, N. et al. Future directions in research with presymptomatic individuals carrying the gene for Huntington's disease. Brain Res. Bull. 59, 331–338 (2003).

    Article  PubMed  Google Scholar 

  27. Rioux, J. D. et al. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nature Genet. 29, 223–228 (2001).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  28. Peltekova, V. D. et al. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nature Genet. 36, 471–475 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Barroso, I. et al. Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402, 880–883 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Orr-Urtreger, A. et al. Developmental localization of the splicing alternatives of fibroblast growth factor receptor-2 (FGFR2). Dev. Biol. 158, 475–486 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Gong, Q. H. et al. Thirteen UDP glucuronosyltransferase genes are encoded at the human UGT1 gene complex locus. Pharmacogenetics 11, 357–368 (2001).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  32. Kampa, D. et al. Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Res. 14, 331–342 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Collins, J. E. et al. Reevaluating human gene annotation: a second-generation analysis of chromosome 22. Genome Res. 13, 27–36 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Calin, G. A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA 101, 2999–3004 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ambros, V. et al. A uniform system for microRNA annotation. RNA 9, 277–279 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lehner, B., Williams, G., Campbell, R. D. & Sanderson, C. M. Antisense transcripts in the human genome. Trends Genet. 18, 63–65 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Davidson, E. H. et al. A genomic regulatory network for development. Science 295, 1669–1678 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Lee, T. I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Novik, K. L. et al. Epigenomics: genome-wide study of methylation phenomena. Curr. Issues Mol. Biol. 4, 111–128 (2002).

    CAS  PubMed  Google Scholar 

  40. Roix, J. J., McQueen, P. G., Munson, P. J., Parada, L. A. & Misteli, T. Spatial proximity of translocation-prone gene loci in human lymphomas. Nature Genet. 34, 287–291 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Thomas, J. W. et al. Comparative analyses of multi-species sequences from targeted genomic regions. Nature 424, 788–793 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Margulies, E. H., Blanchette, M., Haussler, D. & Green, E. D. Identification and characterization of multi-species conserved sequences. Genome Res. 13, 2507–2518 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Boffelli, D. et al. Phylogenetic shadowing of primate sequences to find functional regions of the human genome. Science 299, 1391–1394 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Pilpel, Y., Sudarsanam, P. & Church, G. M. Identifying regulatory networks by combinatorial analysis of promoter elements. Nature Genet. 29, 153–159 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. von Mering, C. et al. Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417, 399–403 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Bar-Joseph, Z. et al. Computational discovery of gene modules and regulatory networks. Nature Biotechnol. 21, 1337–1342 (2003).

    Article  CAS  Google Scholar 

  47. Smith, T. Whole genome variation analysis using single molecule sequencing. Targets (in the press).

  48. Shendure, J., Mitra, R. D., Varma, C. & Church, G. M. Advanced sequencing technologies: methods and goals. Nature Rev. Genet. 5, 335–344 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Bingley, P. J. et al. Undiagnosed coeliac disease at age seven: population based prospective birth cohort study. Br. Med. J. 328, 322–323 (2004).

    Article  Google Scholar 

  50. Golub, T. R. Genomic approaches to the pathogenesis of hematologic malignancy. Curr. Opin. Hematol. 8, 252–261 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Dowell, R. D., Jokerst, R. M., Day, A., Eddy, S. R. & Stein, L. The distributed annotation system. BMC Bioinformatics 2, 7 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dunham, I. et al. The DNA sequence of human chromosome 22. Nature 402, 489–495 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Deloukas, P. et al. The DNA sequence and comparative analysis of human chromosome 20. Nature 414, 865–871 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Hattori, M. et al. The DNA sequence of human chromosome 21. Nature 405, 311–319 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Hillier, L. W. et al. The DNA sequence of human chromosome 7. Nature 424, 157–164 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Heilig, R. et al. The DNA sequence and analysis of human chromosome 14. Nature 421, 601–607 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Mungall, A. J. et al. The DNA sequence and analysis of human chromosome 6. Nature 425, 805–811 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Skaletsky, H. et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423, 825–837 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Grimwood, J. et al. The DNA sequence and biology of human chromosome 19. Nature 428, 529–535 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Treasure, T., Waller, D., Swift, S. & Peto, J. Radical surgery for mesothelioma. Br. Med. J. 328, 237–238 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

I thank I. Barroso, A. Coffey, T. Cox, S. Grant, T. Hubbard, S. Hunt, G. Leschziner, E. Margulies, K. Rice, J. Rogers, M. Ross, C. Shaw-Smith, R. Steward, M. Stratton, C. Tyler-Smith and others for assistance, discussion and critical reading of the manuscript. The author is supported financially by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bentley, D. Genomes for medicine. Nature 429, 440–445 (2004). https://doi.org/10.1038/nature02622

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02622

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing