The interstellar N2 abundance towards HD 124314 from far-ultraviolet observations


The abundance of interstellar molecular nitrogen (N2) is of considerable importance: models of steady-state gas-phase interstellar chemistry1,2, together with millimetre-wavelength observations3,4 of interstellar N2H+ in dense molecular clouds predict that N2 should be the most abundant nitrogen-bearing molecule in the interstellar medium. Previous attempts to detect N2 absorption in the far-ultraviolet5 or infrared6 (ice features) have hitherto been unsuccessful. Here we report the detection of interstellar N2 at far-ultraviolet wavelengths towards the moderately reddened star HD 124314 in the constellation of Centaurus. The N2 column density is larger than expected from models of diffuse clouds and significantly smaller than expected for dense molecular clouds1. Moreover, the N2 abundance does not explain the observed variations7 in the abundance of atomic nitrogen (N I) towards high-column-density sightlines, implying that the models of nitrogen chemistry in the interstellar medium are incomplete8.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The N2 portion of the normalized FUSE spectra of HD 124314.
Figure 2: The normalized archival STIS/HST spectra of O I, S I and CO.


  1. 1

    Viala, Y. P. Chemical equilibrium from diffuse to dense interstellar clouds. I Galactic molecular clouds. Astron. Astrophys. (Suppl.) 64, 391–437 (1986)

    ADS  CAS  Google Scholar 

  2. 2

    Bergin, E. A., Langer, W. D. & Goldsmith, P. F. Gas-phase chemistry in dense interstellar clouds including grain surface molecular depletion and desorption. Astrophys. J. 441, 222–243 (1995)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Womack, M., Ziruys, L. M. & Wyckoff, S. A survey of N2H+ in dense clouds: Implications for interstellar nitrogen and ion-molecule chemistry. Astrophys. J. 387, 417–429 (1992)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Womack, M., Ziruys, L. M. & Wyckoff, S. Estimates of N2 abundances in dense molecular clouds. Astrophys. J. 393, 188–192 (1992)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Lutz, B. L., Owen, T. & Snow, T. P. Jr A search with Copernicus for interstellar N2 in diffuse clouds. Astrophys. J. 227, 159–162 (1979)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Sandford, S. A., Bernstein, M. P., Allamandola, L. J., Goorvitch, D. & Teixeira, T. C. V. S. The abundances of solid N2 and gaseous CO2 in interstellar dense molecular clouds. Astrophys. J. 548, 836–851 (2001)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Knauth, D. C., Andersson, B.-G., McCandliss, S. R. & Moos, H. W. Potential variations in the interstellar N I abundance. Astrophys. J. 596, L51–L54 (2003)

    ADS  Article  Google Scholar 

  8. 8

    Le Petit, F., Roueff, E. & Herbst, E. H3+ and other species in the diffuse cloud towards ζ Persei: A new detailed model. Astron. Astrophys. 417, 993–1002 (2004)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Walborn, N. R. The space distribution of the O stars in the solar neighborhood. Astron. J. 78, 1067–1073 (1973)

    ADS  Article  Google Scholar 

  10. 10

    Cruz-Gonzalez, C., Recillas-Cruz, E., Costero, R., Peimbert, M. & Torres-Peimbert, S. A catalogue of galactic O stars. The ionization of the low density interstellar medium by runaway stars. Rev. Mex. Astron. Astrofis. 1, 211–259 (1974)

    ADS  Google Scholar 

  11. 11

    André, M. K. et al. Oxygen gas-phase abundance revisited. Astrophys. J. 591, 1000–1012 (2003)

    ADS  Article  Google Scholar 

  12. 12

    Perryman, M. A. C. et al. The HIPPARCOS catalogue. Astron. Astrophys. 323, L49–L52 (1997)

    ADS  Google Scholar 

  13. 13

    Moos, H. W. et al. Overview of the Far Ultraviolet Spectroscopic Explorer mission. Astrophys. J. 538, L1–L6 (2000)

    ADS  Article  Google Scholar 

  14. 14

    Sahnow, D. J. et al. On-orbit performance of the Far Ultraviolet Spectroscopic Explorer satellite. Astrophys. J. 538, L7–L11 (2000)

    ADS  Article  Google Scholar 

  15. 15

    Dixon, W. V. & Sahnow, D. J. CalFUSE v2.2: An improved data calibration pipeline for the Far Ultraviolet Spectroscopic Explorer (FUSE) in astronomical data analysis software and systems XII. (Spec. Iss.; eds Payne, H.E., Jedrzejewski, R.I. & Hook, R. N.) ASP Conf. Ser. 295, (2003) 241–244.

  16. 16

    Knauth, D. C., Howk, J. C., Sembach, K. R., Lauroesch, J. T. & Meyer, D. M. On the origin of the high-ionization intermediate velocity gas toward HD 14434. Astrophys. J. 592, 964–974 (2003)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Federman, S. R., Glassgold, A. E., Jenkins, E. B. & Shaya, E. J. The abundance of CO in diffuse interstellar clouds. An ultraviolet survey. Astrophys. J. 242, 545–559 (1980)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Abgrall, H. & Roueff, E. Wavelengths, oscillator strengths and transition probabilities of the H2 molecule for Lyman and Werner systems. Astron. Astrophys. (Suppl.) 79, 313–328 (1989)

    ADS  Google Scholar 

  19. 19

    Abgrall, H., Roueff, E. & Viala, Y. Vibration-rotation transition probabilities for the ground electronic X1Σ+ state of HD. Astron. Astrophys. (Suppl.) 50, 505–522 (1982)

    ADS  CAS  Google Scholar 

  20. 20

    Morton, D. C. Atomic data for resonance absorption lines. III. Wavelengths longward of the Lyman limit for the elements hydrogen to gallium. Astrophys. J. (Suppl.) 149, 205–238 (2003)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Stark, G. et al. Line oscillator strength measurements in the 0–0 band of the c′41Σu+ - X1Σg+ transition of N2 . Astrophys. J. 531, 321–328 (2000)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Conti, P. S. & Ebbets, D. Spectroscopic studies of O-type stars. VII. Rotational velocities Vsini and evidence for macroturbulent motions. Astrophys. J. 213, 438–447 (1977)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Lanz, T. & Hubeny, T. A grid of non-LTE line-blanketed model atmospheres of O-type stars. Astrophys. J. (Suppl.) 146, 417–441 (2003)

    ADS  Article  Google Scholar 

  24. 24

    Sheffer, Y., Federman, S. R. & Andersson, B.-G. FUSE measurements of Rydberg bands of interstellar CO between 925 and 1150 Å. Astrophys. J. 597, L29–L32 (2003)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Hedin, A. E. Extension of the MSIS thermospheric model into the middle and lower atmosphere. J. Geophys. Res. 96, 1159–1172 (1991)

    ADS  Article  Google Scholar 

  26. 26

    Clayton, R. N. Self shielding in the Solar Nebula. Nature 415, 860–861 (2002)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Van Dishoeck, E. F. & Black, J. H. The photodissociation and chemistry of interstellar CO. Astrophys. J. 334, 771–802 (1988)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Bohlin, R. C., Savage, B. D. & Drake, J. F. A survey of interstellar H I from Lα absorption measurements. II. Astrophys. J. 242, 132–142 (1978)

    ADS  Article  Google Scholar 

  29. 29

    Sneden, C., Gehrz, R. D., Hackwell, J. A., York, D. G. & Snow, T. P. Infrared colors and the diffuse interstellar bands. Astrophys. J. 223, 168–179 (1978)

    ADS  Article  Google Scholar 

Download references


We thank A. Fullerton, S. R. Federman, P. Feldman, E. B. Jenkins, P. Sonnentrucker and P. Wannier for discussions and G. Stark for sharing his unpublished N2 f-values. This work is based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer, which is operated for NASA by Johns Hopkins University.

Author information



Corresponding author

Correspondence to David C. Knauth.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure

Shows the N2 portion for three O6 stars: HD 124314, HD 39680 [E(B-V)=0.34], and HD 165052 [E(B-V)=0.42]. (DOC 319 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Knauth, D., Andersson, B., McCandliss, S. et al. The interstellar N2 abundance towards HD 124314 from far-ultraviolet observations. Nature 429, 636–638 (2004).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing