Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae


Whole-genome duplication followed by massive gene loss and specialization has long been postulated as a powerful mechanism of evolutionary innovation. Recently, it has become possible to test this notion by searching complete genome sequence for signs of ancient duplication. Here, we show that the yeast Saccharomyces cerevisiae arose from ancient whole-genome duplication, by sequencing and analysing Kluyveromyces waltii, a related yeast species that diverged before the duplication. The two genomes are related by a 1:2 mapping, with each region of K. waltii corresponding to two regions of S. cerevisiae, as expected for whole-genome duplication. This resolves the long-standing controversy on the ancestry of the yeast genome, and makes it possible to study the fate of duplicated genes directly. Strikingly, 95% of cases of accelerated evolution involve only one member of a gene pair, providing strong support for a specific model of evolution, and allowing us to distinguish ancestral and derived functions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Model of WGD followed by massive gene loss predicts gene interleaving in sister regions.
Figure 2: Gene and region correspondence with K. waltii reveals WGD.
Figure 3: Duplicated blocks in S. cerevisiae.
Figure 4: Divergence of duplicated gene pairs.


  1. 1

    Ohno, S. Evolution by Gene Duplication (Allen and Unwin, London, 1970)

    Google Scholar 

  2. 2

    Mayer, V. W. & Aguilera, A. High levels of chromosome instability in polyploids of Saccharomyces cerevisiae. Mutat. Res. 231, 177–186 (1990)

    CAS  Article  Google Scholar 

  3. 3

    Wolfe, K. H. & Shields, D. C. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387, 708–713 (1997)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Seoighe, C. & Wolfe, K. H. Updated map of duplicated regions in the yeast genome. Gene 238, 253–261 (1999)

    CAS  Article  Google Scholar 

  5. 5

    Melnick, L. & Sherman, F. The gene clusters ARC and COR on chromosomes 5 and 10, respectively, of Saccharomyces cerevisiae share a common ancestry. J. Mol. Biol. 233, 372–388 (1993)

    CAS  Article  Google Scholar 

  6. 6

    Goffeau, A. et al. Life with 6000 genes. Science 274, 546, 563–567 (1996)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Philippsen, P. et al. The nucleotide sequence of Saccharomyces cerevisiae chromosome XIV and its evolutionary implications. Nature 387, 93–98 (1997)

    CAS  Article  Google Scholar 

  8. 8

    Mewes, H. W. et al. Overview of the yeast genome. Nature 387, 7–65 (1997)

    Article  Google Scholar 

  9. 9

    Coissac, E., Maillier, E. & Netter, P. A comparative study of duplications in bacteria and eukaryotes: the importance of telomeres. Mol. Biol. Evol. 14, 1062–1074 (1997)

    CAS  Article  Google Scholar 

  10. 10

    Friedman, R. & Hughes, A. L. Gene duplication and the structure of eukaryotic genomes. Genome Res. 11, 373–381 (2001)

    CAS  Article  Google Scholar 

  11. 11

    Hughes, T. R. et al. Widespread aneuploidy revealed by DNA microarray expression profiling. Nature Genet. 25, 333–337 (2000)

    CAS  Article  Google Scholar 

  12. 12

    Piskur, J. Origin of the duplicated regions in the yeast genomes. Trends Genet. 17, 302–303 (2001)

    CAS  Article  Google Scholar 

  13. 13

    Koszul, R., Caburet, S., Dujon, B. & Fischer, G. Eukaryotic genome evolution through the spontaneous duplication of large chromosomal segments. EMBO J. 23, 234–243 (2004)

    CAS  Article  Google Scholar 

  14. 14

    Llorente, B. et al. Genomic exploration of the hemiascomycetous yeasts: 18. Comparative analysis of chromosome maps and synteny with Saccharomyces cerevisiae. FEBS Lett. 487, 101–112 (2000)

    CAS  Article  Google Scholar 

  15. 15

    Llorente, B. et al. Genomic exploration of the hemiascomycetous yeasts: 20. Evolution of gene redundancy compared to Saccharomyces cerevisiae. FEBS Lett. 487, 122–133 (2000)

    CAS  Article  Google Scholar 

  16. 16

    Wong, S., Butler, G. & Wolfe, K. H. Gene order evolution and paleopolyploidy in hemiascomycete yeasts. Proc. Natl Acad. Sci. USA 99, 9272–9277 (2002)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Langkjaer, R. B., Cliften, P. F., Johnston, M. & Piskur, J. Yeast genome duplication was followed by asynchronous differentiation of duplicated genes. Nature 421, 848–852 (2003)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Kurtzman, C. P., Lynch, M. & Force, A. Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Res. 4, 233–245 (2003)

    CAS  Article  Google Scholar 

  19. 19

    Kellis, M., Patterson, N., Endrizzi, M., Birren, B. & Lander, E. S. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423, 241–254 (2003)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Lynch, M. & Force, A. The probability of duplicate gene preservation by subfunctionalization. Genetics 154, 459–473 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Force, A. et al. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Kondrashov, F. A., Rogozin, I. B., Wolf, Y. I. & Koonin, E. V. Selection in the evolution of gene duplications. Genome Biol. 3, RESEARCH0008.1–0008.9 (2002)

  23. 23

    Shore, D., Squire, M. & Nasmyth, K. A. Characterization of two genes required for the position-effect control of yeast mating-type genes. EMBO J. 3, 2817–2823 (1984)

    CAS  Article  Google Scholar 

  24. 24

    Bell, S. P., Kobayashi, R. & Stillman, B. Yeast origin recognition complex functions in transcription silencing and DNA replication. Science 262, 1844–1849 (1993)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Benard, L., Carroll, K., Valle, R. C., Masison, D. C. & Wickner, R. B. The ski7 antiviral protein is an EF1-alpha homolog that blocks expression of non-Poly(A) mRNA in Saccharomyces cerevisiae. J. Virol. 73, 2893–2900 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Huh, W. K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Sanz, M., Trilla, J. A., Duran, A. & Roncero, C. Control of chitin synthesis through Shc1p, a functional homologue of Chs4p specifically induced during sporulation. Mol. Microbiol. 43, 1183–1195 (2002)

    CAS  Article  Google Scholar 

  28. 28

    Lorenz, M. C. & Heitman, J. Regulators of pseudohyphal differentiation in Saccharomyces cerevisiae identified through multicopy suppressor analysis in ammonium permease mutant strains. Genetics 150, 1443–1457 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Winzeler, E. A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999)

    CAS  Article  Google Scholar 

  30. 30

    Gu, Z. et al. Role of duplicate genes in genetic robustness against null mutations. Nature 421, 63–66 (2003)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Sharp, P. M. & Li, W. H. The codon adaptation index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15, 1281–1295 (1987)

    ADS  CAS  Article  Google Scholar 

  32. 32

    Sarthy, A. V. et al. Identification and kinetic analysis of a functional homolog of elongation factor 3, YEF3 in Saccharomyces cerevisiae. Yeast 14, 239–253 (1998)

    CAS  Article  Google Scholar 

  33. 33

    Boles, E. et al. Characterization of a glucose-repressed pyruvate kinase (Pyk2p) in Saccharomyces cerevisiae that is catalytically insensitive to fructose-1,6-bisphosphate. J. Bacteriol. 179, 2987–2993 (1997)

    CAS  Article  Google Scholar 

  34. 34

    Hughes, M. K. & Hughes, A. L. Evolution of duplicate genes in a tetraploid animal, Xenopus laevis. Mol. Biol. Evol. 10, 1360–1369 (1993)

    CAS  PubMed  Google Scholar 

  35. 35

    Gallardo, M. H., Bickham, J. W., Honeycutt, R. L., Ojeda, R. A. & Kohler, N. Discovery of tetraploidy in a mammal. Nature 401, 341 (1999)

    ADS  CAS  Article  Google Scholar 

  36. 36

    Bailey, G. S., Poulter, R. T. & Stockwell, P. A. Gene duplication in tetraploid fish: model for gene silencing at unlinked duplicated loci. Proc. Natl Acad. Sci. USA 75, 5575–5579 (1978)

    ADS  CAS  Article  Google Scholar 

  37. 37

    Otto, S. P. & Whitton, J. Polyploid incidence and evolution. Annu. Rev. Genet. 34, 401–437 (2000)

    CAS  Article  Google Scholar 

  38. 38

    Blanc, G., Barakat, A., Guyot, R., Cooke, R. & Delseny, M. Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell 12, 1093–1101 (2000)

    CAS  Article  Google Scholar 

  39. 39

    Sidow, A. Gen(om)e duplications in the evolution of early vertebrates. Curr. Opin. Genet. Dev. 6, 715–722 (1996)

    CAS  Article  Google Scholar 

  40. 40

    Pebusque, M. J., Coulier, F., Birnbaum, D. & Pontarotti, P. Ancient large-scale genome duplications: phylogenetic and linkage analyses shed light on chordate genome evolution. Mol. Biol. Evol. 15, 1145–1159 (1998)

    CAS  Article  Google Scholar 

  41. 41

    Batzoglou, S. et al. ARACHNE: a whole-genome shotgun assembler. Genome Res. 12, 177–189 (2002)

    CAS  Article  Google Scholar 

  42. 42

    Jaffe, D. B. et al. Whole-genome sequence assembly for mammalian genomes: arachne 2. Genome Res. 13, 91–96 (2003)

    CAS  Article  Google Scholar 

  43. 43

    Kellis, M., Patterson, N., Birren, B., Berger, B. & Lander, E. S. Methods in comparative genomics: genome correspondence, gene identification, regulatory motif discovery. J. Comput. Biol. (in the press)

  44. 44

    Turner, R. J., Lovato, M. & Schimmel, P. One of two genes encoding glycyl-tRNA synthetase in Saccharomyces cerevisiae provides mitochondrial and cytoplasmic functions. J. Biol. Chem. 275, 27681–27688 (2000)

    CAS  PubMed  Google Scholar 

  45. 45

    Kurtzman, C. P. & Robnett, C. J. Phylogenetic relationships among yeasts of the ‘Saccharomyces complex’ determined from multigene sequence analyses. FEMS Yeast Res. 3, 417–432 (2003)

    CAS  Article  Google Scholar 

Download references


We thank I. Roberts for providing strains; M. Endrizzi, L.-J. Ma, D. Qi and the staff of the MIT/Whitehead Institute Center for Genome Research who generated the shotgun sequence from Kluyveromyces waltii; J. Butler and the Arachne assembly team who generated the genome assembly; D. Bartel, S. Calvo, J. Galagan, D. Jaffe and J. Vinson for discussions and comments on the manuscript; and G. Fink and A. Murray for discussions and advice.

Author information



Corresponding authors

Correspondence to Manolis Kellis or Eric S. Lander.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Information

Links to directory containing: S1. Assembly; S2. ORFs; S3. Annotation; S4. Blocks; S5. Poster; S6. Visualization; S7. Dupblocks; S8. Dupgenes; S9. Trees; S10. Centromeres. (HTM 37 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kellis, M., Birren, B. & Lander, E. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428, 617–624 (2004).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.