Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks

A Corrigendum to this article was published on 23 February 2006

Abstract

Hindlimb loss has evolved repeatedly in many different animals by means of molecular mechanisms that are still unknown. To determine the number and type of genetic changes underlying pelvic reduction in natural populations, we carried out genetic crosses between threespine stickleback fish with complete or missing pelvic structures. Genome-wide linkage mapping shows that pelvic reduction is controlled by one major and four minor chromosome regions. Pitx1 maps to the major chromosome region controlling most of the variation in pelvic size. Pelvic-reduced fish show the same left–right asymmetry seen in Pitx1 knockout mice, but do not show changes in Pitx1 protein sequence. Instead, pelvic-reduced sticklebacks show site-specific regulatory changes in Pitx1 expression, with reduced or absent expression in pelvic and caudal fin precursors. Regulatory mutations in major developmental control genes may provide a mechanism for generating rapid skeletal changes in natural populations, while preserving the essential roles of these genes in other processes.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Genetic architecture of pelvic reduction in a cross between marine and Paxton benthic sticklebacks.
Figure 2: Structure and sequence of the stickleback Pitx1 locus.
Figure 3: Pitx1 is expressed in the prospective pelvic region of marine but not Paxton benthic sticklebacks.
Figure 4: Site-specific regulatory changes of Pitx1 expression.
Figure 5: Comparison of pelvic reduction in laboratory and natural populations.

References

  1. Darwin, C. The Origin of Species 450–456 (John Murray, London, 1859)

    Google Scholar 

  2. Struthers, J. On the bones, articulations, and muscles of the rudimentary hind-limb of the Greenland right-whale (Balaena mysticetus). J. Anat. Phys. 15, 141–176, 302–321 (1881)

    Google Scholar 

  3. Bejder, L. & Hall, B. K. Limbs in whales and limblessness in other vertebrates: mechanisms of evolutionary and developmental transformation and loss. Evol. Dev. 4, 445–458 (2002)

    Article  Google Scholar 

  4. Lande, R. Evolutionary mechanisms of limb loss in tetrapods. Evolution 32, 73–92 (1978)

    Article  Google Scholar 

  5. Cohn, M. J. & Tickle, C. Developmental basis of limblessness and axial patterning in snakes. Nature 399, 474–479 (1999)

    ADS  CAS  Article  Google Scholar 

  6. Hoogland, R. D., Morris, D. & Tinbergen, N. The spines of sticklebacks (Gasterosteus and Pygosteus) as means of defense against predators (Perca and Esox). Behaviour 10, 205–230 (1957)

    Google Scholar 

  7. Reimchen, T. E. Structural relationships between spines and lateral plates in threespine stickleback (Gasterosteus aculeatus). Evolution 37, 931–946 (1983)

    CAS  PubMed  Google Scholar 

  8. Bell, M. A. Reduction and loss of the pelvic girdle in Gasterosteus (Pisces): a case of parallel evolution. Nat. Hist. Mus. LA Contrib. Sci. 257, 1–36 (1974)

    Google Scholar 

  9. Moodie, G. E. E. & Reimchen, T. Phenetic variation and habitat differences in Gasterosteus populations of the Queen Charlotte Islands. Syst. Zool. 25, 49–61 (1976)

    Article  Google Scholar 

  10. Campbell, R. N. & Williamson, R. B. The fishes of inland waters in the Outer Hebrides. Proc. R. Soc. Edinb. 77B, 377–393 (1979)

    Google Scholar 

  11. Edge, T. A. & Coad, B. W. Reduction of the pelvic skeleton in the three-spined stickleback Gasterosteus aculeatus in 2 lakes of Quebec Canada. Can. Field-Nat. 97, 334–336 (1983)

    Google Scholar 

  12. Bell, M. A. Interacting evolutionary constraints in pelvic reduction of threespine sticklebacks, Gasterosteus aculeatus (Pisces, Gasterosteidae). Biol. J. Linn. Soc. 31, 347–382 (1987)

    Article  Google Scholar 

  13. Reimchen, T. E. Spine deficiency and polymorphism in a population of Gasterosteus aculeatus—an adaptation to predators. Can. J. Zool. 58, 1232–1244 (1980)

    Article  Google Scholar 

  14. Reist, J. D. Predation upon pelvic phenotypes of brook stickleback, Culaea inconstans, by selected invertebrates. Can. J. Zool. 58, 1253–1258 (1980)

    Article  Google Scholar 

  15. Giles, N. The possible role of environmental calcium levels during the evolution of phenotypic diversity in Outer-Hebridean populations of the three-spined stickleback, Gasterosteus aculeatus. J. Zool. 199, 535–544 (1983)

    Article  Google Scholar 

  16. Bell, M. A., Orti, G., Walker, J. A. & Koenings, J. P. Evolution of pelvic reduction in threespine stickleback fish—a test of competing hypotheses. Evolution 47, 906–914 (1993)

    Article  Google Scholar 

  17. Ziuganov, V. V. & Zotin, A. A. Pelvic girdle polymorphism and reproductive barriers in the ninespine stickleback Pungitius pungitius (L.) from northwest Russia. Behaviour 132, 1095–1105 (1995)

    Article  Google Scholar 

  18. Bell, M. A., Baumgartner, J. V. & Olson, E. C. Patterns of temporal change in single morphological characters of a Miocene stickleback fish. Paleobiology 11, 258–271 (1985)

    Article  Google Scholar 

  19. McPhail, J. D. Ecology and evolution of sympatric sticklebacks (Gasterosteus): evidence for a species pair in Paxton Lake, Texada Island, British Columbia. Can. J. Zool. 70, 361–369 (1992)

    Article  Google Scholar 

  20. Peichel, C. L. et al. The genetic architecture of divergence between threespine stickleback species. Nature 414, 901–905 (2001)

    ADS  CAS  Article  Google Scholar 

  21. Crow, J. F. & Kimura, M. An Introduction to Population Genetics Theory 182–183 (Burgess, Minneapolis, 1970)

    MATH  Google Scholar 

  22. Gibson-Brown, J. J. et al. Evidence of a role for T-box genes in the evolution of limb morphogenesis and the specification of forelimb/hindlimb identity. Mech. Dev. 56, 93–101 (1996)

    CAS  Article  Google Scholar 

  23. Logan, M., Simon, H. G. & Tabin, C. Differential regulation of T-box and homeobox transcription factors suggests roles in controlling chick limb-type identity. Development 125, 2825–2835 (1998)

    CAS  PubMed  Google Scholar 

  24. Logan, M. & Tabin, C. J. Role of Pitx1 upstream of Tbx4 in specification of hindlimb identity. Science 283, 1736–1739 (1999)

    ADS  CAS  Article  Google Scholar 

  25. Lanctôt, C., Moreau, A., Chamberland, M., Tremblay, M. L. & Drouin, J. Hindlimb patterning and mandible development require the Ptx1 gene. Development 126, 1805–1810 (1999)

    PubMed  Google Scholar 

  26. Szeto, D. P. et al. Role of the Bicoid-related homeodomain factor Pitx1 in specifying hindlimb morphogenesis and pituitary development. Genes Dev. 13, 484–494 (1999)

    CAS  Article  Google Scholar 

  27. Marcil, A., Dumontier, E., Chamberland, M., Camper, S. A. & Drouin, J. Pitx1 and Pitx2 are required for development of hindlimb buds. Development 130, 45–55 (2003)

    CAS  Article  Google Scholar 

  28. Shang, J., Luo, Y. & Clayton, D. A. Backfoot is a novel homeobox gene expressed in the mesenchyme of developing hind limb. Dev. Dyn. 209, 242–253 (1997)

    CAS  Article  Google Scholar 

  29. Campione, M. et al. The homeobox gene Pitx2: mediator of asymmetric left-right signaling in vertebrate heart and gut looping. Development 126, 1225–1234 (1999)

    CAS  PubMed  Google Scholar 

  30. Naiche, L. A. & Papaioannou, V. E. Loss of Tbx4 blocks hindlimb development and affects vascularization and fusion of the allantois. Development 130, 2681–2693 (2003)

    CAS  Article  Google Scholar 

  31. Bruneau, B. G. et al. A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell 106, 709–721 (2001)

    CAS  Article  Google Scholar 

  32. Garrity, D. M., Childs, S. & Fishman, M. C. The heartstrings mutation in zebrafish causes heart/fin Tbx5 deficiency syndrome. Development 129, 4635–4645 (2002)

    CAS  PubMed  Google Scholar 

  33. Carroll, S. B. Endless forms: the evolution of gene regulation and morphological diversity. Cell 101, 577–580 (2000)

    CAS  Article  Google Scholar 

  34. Stern, D. L. Evolutionary developmental biology and the problem of variation. Evolution 54, 1079–1091 (2000)

    CAS  Article  Google Scholar 

  35. Tautz, D. Evolution of transcriptional regulation. Curr. Opin. Genet. Dev. 10, 575–579 (2000)

    CAS  Article  Google Scholar 

  36. Stern, D. L. A role of Ultrabithorax in morphological differences between Drosophila species. Nature 396, 463–466 (1998)

    ADS  CAS  Article  Google Scholar 

  37. Sucena, E. & Stern, D. L. Divergence of larval morphology between Drosophila sechellia and its sibling species caused by cis-regulatory evolution of ovo/shaven-baby. Proc. Natl Acad. Sci. USA 97, 4530–4534 (2000)

    ADS  CAS  Article  Google Scholar 

  38. Kopp, A., Duncan, I., Godt, D. & Carroll, S. B. Genetic control and evolution of sexually dimorphic characters in Drosophila. Nature 408, 553–559 (2000)

    ADS  CAS  Article  Google Scholar 

  39. Beldade, P., Brakefield, P. M. & Long, A. D. Contribution of Distal-less to quantitative variation in butterfly eyespots. Nature 415, 315–318 (2002)

    ADS  CAS  Article  Google Scholar 

  40. van Laere, A. S. et al. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425, 832–836 (2003)

    ADS  CAS  Article  Google Scholar 

  41. Schwartz, S. et al. Human-mouse alignments with BLASTZ. Genome Res. 13, 103–107 (2003)

    CAS  Article  Google Scholar 

  42. Cole, N. J., Tanaka, M., Prescott, A. & Tickle, C. Expression of limb initiation genes and clues to the morphological diversification of threespine stickleback. Curr. Biol. 13, R951–R952 (2003)

    CAS  Article  Google Scholar 

  43. Bell, M. A., Francis, R. C. & Havens, A. C. Pelvic reduction and its directional asymmetry in threespine sticklebacks from the Cook Inlet region, Alaska. Copeia 1985, 437–444 (1985)

    Article  Google Scholar 

  44. Nelson, J. S. Evidence of a genetic basis for absence of pelvic skeleton in brook stickleback, Culaea inconstans, and notes on geographical distribution and origin of loss. J. Fish. Res. Board Can. 34, 1314–1320 (1977)

    Article  Google Scholar 

  45. Nelson, J. S. Absence of pelvic complex in ninespine sticklebacks, Pungitius pungitius, collected in Ireland and Wood Buffalo National Park region, Canada, with notes on meristic variation. Copeia 1971, 707–717 (1971)

    Article  Google Scholar 

  46. van Ooijen, J. W. & Maliepard, C. MapQTL Version 3.0: Software for the Calculation of QTL Positions and Genetic Maps (Centre for Plant Breeding and Reproductive Research, Wageningen, 1996)

    Google Scholar 

  47. Ross, M. T., LaBrie, S., McPherson, J. & Stanton, V. P. in Current Protocols in Human Genetics (ed. Dracopoli, N.) (Wiley, New York, 1999)

    Google Scholar 

  48. Wilkinson, D. G. in Essential Developmental Biology: A Practical Approach (eds Stern, C. D. & Holland, P. W. H.) 257–274 (IRL Press, Oxford, 1993)

    Google Scholar 

  49. Swarup, H. Stages in the development of the stickleback Gasterosteus aculeatus (L.). J. Embryol. Exp. Morphol. 6, 373–383 (1958)

    CAS  PubMed  Google Scholar 

  50. Van Ooijen, J. W. LOD significance thresholds for QTL analysis in experimental populations of diploid species. Heredity 83, 613–624 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Mori for providing marine sticklebacks; E. Elfarsdóttir, G. I. Gudbrandsson, L. E. Jónsdóttir, S. Ingólfsdóttir and K. Einarsdóttir for collecting Icelandic sticklebacks and scoring the parental population from Vífilsstadavatn; and F. Chan and members of the Kingsley laboratory for discussions. This work was supported in part by grants from the National Institutes of Health (to D.M.K.), the Natural Sciences and Engineering Research Council of Canada and the Canada Foundation for Innovation (to D.S.), and the City of Gardabaer (to B.J.); a Helen Hay Whitney Foundation postdoctoral fellowship (to M.D.S.); and a Howard Hughes Medical Institute predoctoral fellowship (to M.E.M). D.S. is a Canada Research Chair, and D.M.K. is an Associate Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Kingsley.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Information

List of microsatellite markers used in Figure 1 of main text; and Supplementary Table 1: Comparison of the effect of modifier QTL in animals with different genotypes at the Pitx1 locus. (DOC 100 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shapiro, M., Marks, M., Peichel, C. et al. Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature 428, 717–723 (2004). https://doi.org/10.1038/nature02415

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02415

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing