Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor

Abstract

Silicon has long been the optimal material for electronics, but it is only relatively recently that it has been considered as a material option for photonics1. One of the key limitations for using silicon as a photonic material has been the relatively low speed of silicon optical modulators compared to those fabricated from III–V semiconductor compounds2,3,4,5,6 and/or electro-optic materials such as lithium niobate7,8,9. To date, the fastest silicon-waveguide-based optical modulator that has been demonstrated experimentally has a modulation frequency of only 20 MHz (refs 10, 11), although it has been predicted theoretically that a 1-GHz modulation frequency might be achievable in some device structures12,13. Here we describe an approach based on a metal–oxide–semiconductor (MOS) capacitor structure embedded in a silicon waveguide that can produce high-speed optical phase modulation: we demonstrate an all-silicon optical modulator with a modulation bandwidth exceeding 1 GHz. As this technology is compatible with conventional complementary MOS (CMOS) processing, monolithic integration of the silicon modulator with advanced electronics on a single silicon substrate becomes possible.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic diagram showing the cross-sectional view of a MOS capacitor waveguide phase shifter using ‘silicon-on-insulator’ technology.
Figure 2: Phase shift Δφ versus drive voltage VD of the MOS capacitor phase shifter in Fig. 1 at a wavelength of λ = 1.55 µm for different phase shifter lengths.
Figure 3: Integrated silicon optical modulator and measured drive-voltage-dependent output optical intensity.
Figure 4: Frequency dependence of the optical response of a silicon MZI modulator.
Figure 5

References

  1. Soref, R. A. Silicon-based optoelectronics. Proc. IEEE 81, 1687–1706 (1993)

    CAS  Article  Google Scholar 

  2. Zucker, J. E., Jones, K. L., Miller, B. I. & Koren, U. Miniature Mach-Zehnder InGaAsP quantum well waveguide interferometers for 1.3 µm. IEEE Photon. Technol. Lett. 2, 32–34 (1990)

    ADS  Article  Google Scholar 

  3. Cites, J. S. & Ashley, P. R. High-performance Mach-Zehnder modulators in multiple quantum well GaAs/AlGaAs. J. Lightwave Technol. 12, 1167–1173 (1992)

    ADS  Article  Google Scholar 

  4. Fetterman, M., Chao, C.-P. & Forrest, S. R. Fabrication and analysis of high-contrast InGaAsP-InP Mach-Zehnder modulators for use at 1.55-µm wavelength. IEEE Photon. Technol. Lett. 8, 69–71 (1996)

    ADS  Article  Google Scholar 

  5. Leclerc, O. et al. Polarisation-independent InP push-pull Mach-Zehnder modulator for 20 Gbit/s soliton regeneration. Electron. Lett. 34, 1011–1013 (1998)

    Article  Google Scholar 

  6. Ido, T. et al. Ultra-high-speed multiple-quantum-well electro-absorption optical modulators with integrated waveguides. J. Lightwave Technol. 14, 2026–2034 (1996)

    ADS  CAS  Article  Google Scholar 

  7. Fujiwara, T., Watanabe, A. & Mori, H. Measurement of uniformity of driving voltage in Ti:LiNbO3 waveguides using Mach-Zehnder interferometers. IEEE Photon. Technol. Lett. 2, 260–261 (1990)

    ADS  Article  Google Scholar 

  8. Wooten, E. L. et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Select. Topics Quant. Electron. 6, 69–82 (2000)

    ADS  CAS  Article  Google Scholar 

  9. Howerton, M. M., Moeller, R. P., Greenblatt, A. S. & Krahenbuhl, R. Fully packaged, broad-band LiNbO3 modulator with low drive voltage. IEEE Photon. Technol. Lett. 12, 792–794 (2000)

    ADS  Article  Google Scholar 

  10. Tang, C. K. & Reed, G. T. Highly efficient optical phase modulator in SOI waveguides. Electron. Lett. 31, 451–452 (1995)

    Article  Google Scholar 

  11. Dainesi, P. et al. CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology. IEEE Photon. Technol. Lett. 12, 660–662 (2000)

    ADS  Article  Google Scholar 

  12. Png, C. E., Reed, G. T., Atta, R. M. H., Ensell, G. J. & Evans, A. G. R. Development of small silicon modulators in silicon-on-insulator (SOI). Proc. SPIE 4997, 190–197 (2003)

    ADS  Article  Google Scholar 

  13. Irace, A., Breglio, G. & Cutolo, A. All-silicon optoelectronic modulator with 1 GHz switching capability. Electron. Lett. 39, 232–233 (2003)

    Article  Google Scholar 

  14. Soref, R. A. & Lorenzo, P. J. All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm. IEEE J. Quant. Electron. QE-22, 873–879 (1986)

    ADS  CAS  Article  Google Scholar 

  15. Soref, R. A. & Bennett, B. R. Electrooptical effects in silicon. IEEE J. Quant. Electron. QE-23, 123–129 (1987)

    ADS  CAS  Article  Google Scholar 

  16. Cutolo, A., Iodice, M., Spirito, P. & Zeni, L. Silicon electro-optic modulation based on a three terminal device integrated in a low-loss single-mode SOI waveguide. J. Lightwave Technol. 15, 505–518 (1997)

    ADS  CAS  Article  Google Scholar 

  17. Sciuto, A., Libertino, S., Alessandria, A., Coffa, S. & Coppola, G. Design, fabrication, and testing of an integrated Si-based light modulator. J. Lightwave Technol. 21, 228–235 (2003)

    ADS  CAS  Article  Google Scholar 

  18. Liao, L. et al. Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength. J. Electron. Mater. 29, 1380–1386 (2000)

    ADS  CAS  Article  Google Scholar 

  19. Liao, L. Low Loss Polysilicon Waveguides for Silicon Photonics. Thesis, MIT (1997)

    Google Scholar 

  20. Sze, S. M. Physics of Semiconductor Devices 2nd edn (Wiley, New York, 1981)

    Google Scholar 

  21. Soref, R. A. & Bennett, B. R. Kramers-Kronig analysis of electro-optical switching in silicon. Proc. SPIE 704, 32–37 (1986)

    ADS  Article  Google Scholar 

  22. Bank, R. E., Rose, D. J. & Fichtner, W. Numerical methods for semiconductor device simulation. IEEE Trans. Electron. Dev. ED-30, 1031–1041 (1983)

    ADS  Article  Google Scholar 

  23. Sudbo, A. S. Numerically stable formulation of the transverse resonance method for vector mode-field calculations in dielectric waveguides. IEEE Photon. Technol. Lett. 5, 342–344 (1993)

    ADS  Article  Google Scholar 

  24. Ahmed, S. S., Denton, J. P. & Neudeck, G. W. Nitrided thermal SiO2 for use as top and bottom gate insulators in self-aligned double gate silicon-on-insulator metal-oxide-semiconductor field effect transistor. J. Vac. Sci. Technol. B 19, 800–806 (2001)

    CAS  Article  Google Scholar 

  25. Davari, B., Dennard, R. H. & Shahidi, G. G. CMOS scaling for high performance and low power—The next ten years. Proc. IEEE 83, 595–606 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Salib for help in process design and optical loss testing; M. Morse, A. Barkai, S. Tubul and D. Tran for technical assistance in device fabrication; A. Alduino for backend processing; and S. Koehl for data collection software. Special thanks go to D. Elqaq, M. Gill, S. Pang and B. Venkateshwaran for contributions during the early stages of this research. Finally, we thank G. Reed for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansheng Liu.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, A., Jones, R., Liao, L. et al. A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor. Nature 427, 615–618 (2004). https://doi.org/10.1038/nature02310

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02310

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing