Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Subwavelength-diameter silica wires for low-loss optical wave guiding


Silica waveguides with diameters larger than the wavelength of transmitted light are widely used in optical communications, sensors and other applications1,2,3. Minimizing the width of the waveguides is desirable for photonic device applications, but the fabrication of low-loss optical waveguides with subwavelength diameters remains challenging because of strict requirements on surface roughness and diameter uniformity4,5,6,7. Here we report the fabrication of subwavelength-diameter silica ‘wires’ for use as low-loss optical waveguides within the visible to near-infrared spectral range. We use a two-step drawing process to fabricate long free-standing silica wires with diameters down to 50 nm that show surface smoothness at the atomic level together with uniformity of diameter. Light can be launched into these wires by optical evanescent coupling. The wires allow single-mode operation, and have an optical loss of less than 0.1 dB mm-1. We believe that these wires provide promising building blocks for future microphotonic devices with subwavelength-width structures.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The second step in the fabrication process of silica submicrometre- and nanometre wires (SMNWs).
Figure 2: Electron micrographs of SMNWs.
Figure 3: Micromanipulation and flexibility of SMNWs.
Figure 4: Optical characterization of SMNWs.


  1. Yamane, M. & Asahara, Y. Glasses for Photonics (Cambridge Univ. Press, Cambridge, UK, 2000)

    Book  Google Scholar 

  2. Murata, H. Handbook of Optical Fibers and Cables 2nd edn (Marcel Dekker, New York, 1996)

    Google Scholar 

  3. Mynbaev, D. K. & Scheiner, L. L. Fiber-Optic Communications Technology (Prentice Hall, New York, 2001)

    Google Scholar 

  4. Marcuse, D. Mode conversion caused by surface imperfections of a dielectric slab waveguide. Bell Syst. Tech. J. 48, 3187–3215 (1969)

    Article  Google Scholar 

  5. Marcuse, D. & Derosier, R. M. Mode conversion caused by diameter changes of a round dielectric waveguide. Bell Syst. Tech. J. 48, 3217–3232 (1969)

    Article  Google Scholar 

  6. Ladouceur, F. Roughness, inhomogeneity, and integrated optics. J. Lightwave Technol. 15, 1020–1025 (1997)

    ADS  CAS  Article  Google Scholar 

  7. Lee, K. K. et al. Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model. Appl. Phys. Lett. 77, 1617–1619 (2000). Erratum. Appl. Phys. Lett. 77, 2258 (2000)

    ADS  CAS  Article  Google Scholar 

  8. Boys, C. V. On the production, properties, and some suggested uses of the finest threads. Phil. Mag. 23, 489–499 (1887)

    Article  Google Scholar 

  9. Threlfall, R. On Laboratory Arts (Macmillan, London, 1898)

    Google Scholar 

  10. Knight, J. C., Cheung, G., Jacques, F. & Birks, T. A. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Opt. Lett. 22, 1129–1131 (1997)

    ADS  CAS  Article  Google Scholar 

  11. Birks, T. A., Wadsworth, W. J. & Russell, P. St. J. Supercontinuum generation in tapered fibers. Opt. Lett. 25, 1415–1417 (2000)

    ADS  CAS  Article  Google Scholar 

  12. Cai, M. & Vahala, K. Highly efficient hybrid fiber taper coupled microsphere laser. Opt. Lett. 26, 884–886 (2001)

    ADS  CAS  Article  Google Scholar 

  13. Kakarantzas, G., Dimmick, T. E., Birks, T. A., Le Roux, R. & Russell, P. St. J. Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers. Opt. Lett. 26, 1137–1139 (2001)

    ADS  CAS  Article  Google Scholar 

  14. Dimmick, T. E., Kakarantzas, G., Birks, T. A. & Russell, P. St. J. Carbon dioxide laser fabrication of fused-fiber couplers and tapers. Appl. Opt. 38, 6845–6848 (1999)

    ADS  CAS  Article  Google Scholar 

  15. Grellier, A. J. C., Zayer, N. K. & Pannell, C. N. Heat transfer modeling in CO2 laser processing of optical fibres. Opt. Commun. 152, 324–328 (1998)

    ADS  CAS  Article  Google Scholar 

  16. Wang, Z. L., Gao, R. P. P., Gole, J. L. & Stout, J. D. Silica nanotubes and nanofiber arrays. Adv. Mater. 12, 1938–1940 (2000)

    CAS  Article  Google Scholar 

  17. Pan, Z. W., Dai, Z. R., Ma, C. & Wang, Z. L. Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires. J. Am. Chem. Soc. 124, 1817–1822 (2002)

    CAS  Article  Google Scholar 

  18. Hu, J. Q., Meng, X. M., Jiang, Y., Lee, C. S. & Lee, S. T. Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers. Adv. Mater. 15, 70–73 (2003)

    CAS  Article  Google Scholar 

  19. Labelle, H. E. & Mlavsky, A. I. Growth of sapphire filaments from melt. Nature 216, 574–575 (1967)

    ADS  CAS  Article  Google Scholar 

  20. Morales, A. M. & Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208–211 (1998)

    ADS  CAS  Article  Google Scholar 

  21. Xia, Y., Rogers, J. A., Paul, K. E. & Whitesides, G. M. Unconventional methods for fabricating and patterning nanostructures. Chem. Rev. 99, 1823–1848 (1999)

    CAS  Article  Google Scholar 

  22. Ito, T. & Okazaki, S. Pushing the limits of lithography. Nature 406, 1027–1031 (2000)

    CAS  Article  Google Scholar 

  23. Lee, K. K., Lim, D. R., Kimerling, L. C., Shin, J. & Cerrina, F. Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction. Opt. Lett. 26, 1888–1890 (2001)

    ADS  CAS  Article  Google Scholar 

  24. Matthewson, M. J., Kurkjian, C. R. & Gulati, S. T. Strength measurement of optical fibers by bending. J. Am. Ceram. Soc. 69, 815–821 (1986)

    CAS  Article  Google Scholar 

  25. Krause, J. T., Testardi, L. R. & Thurston, R. N. Deviations from linearity in the dependence of elongation upon force for fibers of simple glass formers and of glass optical light guides. Phys. Chem. Glasses 20, 135–139 (1979)

    CAS  Google Scholar 

  26. Takahara, J., Yamagishi, S., Taki, H., Morimoto, A. & Kobayashi, T. Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett. 22, 475–477 (1997)

    ADS  CAS  Article  Google Scholar 

  27. Maier, S. A., Kik, P. G. & Atwater, H. A. Observation of coupled plasmon-polarization modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss. Appl. Phys. Lett. 81, 1714–1716 (2002)

    ADS  CAS  Article  Google Scholar 

  28. Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater. 2, 229–232 (2003)

    ADS  CAS  Article  Google Scholar 

  29. Snyder, A. W. & Love, J. D. Optical Waveguide Theory (Chapman and Hall, New York, 1983)

    Google Scholar 

  30. Taflove, A. Computational Electrodynamics: The Finite-difference Time-domain Method (Artech House, Boston, 1995)

    MATH  Google Scholar 

Download references


We thank Y. Lu, Z. Han and B. Tull for assistance in SEM and TEM imaging, and L. Liu and X. Chen for help with numerical simulations. This work was supported by the US National Science Foundation and by the National Natural Science Foundation in China. T.L. acknowledges support from the Centre for Imaging and Mesoscale Structures at Harvard University.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Eric Mazur.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tong, L., Gattass, R., Ashcom, J. et al. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426, 816–819 (2003).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing