Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Subatomic movements of a domain wall in the Peierls potential

Abstract

The discrete nature of crystal lattices plays a role in virtually every material property. But it is only when the size of entities hosted by a crystal becomes comparable to the lattice period—as occurs for dislocations1,2,3, vortices in superconductors4,5,6 and domain walls7,8,9—that this discreteness is manifest explicitly. The associated phenomena are usually described in terms of a background Peierls ‘atomic washboard’ energy potential, which was first introduced for the case of dislocation motion1,2 in the 1940s. This concept has subsequently been invoked in many situations to describe certain features in the bulk behaviour of materials, but has to date eluded direct detection and experimental scrutiny at a microscopic level. Here we report observations of the motion of a single magnetic domain wall at the scale of the individual peaks and troughs of the atomic energy landscape. Our experiments reveal that domain walls can become trapped between crystalline planes, and that they propagate by distinct jumps that match the lattice periodicity. The jumps between valleys are found to involve unusual dynamics that shed light on the microscopic processes underlying domain-wall propagation. Such observations offer a means for probing experimentally the physics of topological defects in discrete lattices—a field rich in phenomena that have been subject to extensive theoretical study10,11,12.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental structures and devices.
Figure 2: Nanometre movements of domain walls over submicrometre distances.
Figure 3: Jumps of a domain wall between equivalent lattice sites.
Figure 4: Domain wall on the Peierls ridge.

References

  1. 1

    Peierls, R. E. The size of a dislocation. Proc. Phys. Soc. 52, 34–37 (1940)

    ADS  Article  Google Scholar 

  2. 2

    Nabarro, F. R. N. Dislocations in a simple cubic lattice. Proc. Phys. Soc. 59, 256–272 (1947)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Kolar, H. R., Spence, J. C. H. & Alexander, H. Observation of moving dislocation kinks and unpinning. Phys. Rev. Lett. 77, 4031–4034 (1996)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Ivlev, B. I. & Kopnin, N. B. Flux creep and flux pinning in layered high-temperature superconductors. Phys. Rev. Lett. 64, 1828–1830 (1990)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Oussena, M., deGroot, P. A. J., Gagnon, R. & Taillefer, L. Lock-in oscillations in magnetic hysteresis curves of YBa2Cu3O7-x single crystals. Phys. Rev. Lett. 72, 3606–3609 (1994)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Kleiner, R., Steinmeyer, F., Kunkel, G. & Müller, P. Intrinsic Josephson effects in Bi2Sr2CaCu2O8 single crystals. Phys. Rev. Lett. 68, 2394–2397 (1992)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Barbara, B. Propriétés des parois étroites dans les substances ferromagnétiques à forte anisotropie. J. Phys 34, 1039–1046 (1973)

    CAS  Article  Google Scholar 

  8. 8

    van den Broek, J. J. & Zijlstra, H. Calculation of intrinsic coercivity of magnetic domain walls in perfect crystals. IEEE Trans. Magn. 7, 226–230 (1971)

    ADS  Article  Google Scholar 

  9. 9

    Egami, T. & Graham, C. D. Jr Domain walls in ferromagnetic Dy and Tb. J. Appl. Phys. 42, 1299–1300 (1971)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Aubry, S. Devils staircase and order without periodicity in classical condensed matter. J. Phys. 44, 147–162 (1983)

    MathSciNet  CAS  Article  Google Scholar 

  11. 11

    Braun, O. M. & Kivshar, Y. S. Nonlinear dynamics of the Frenkel-Kontorova model. Phys. Rep. 306, 2–108 (1998)

    ADS  MathSciNet  Article  Google Scholar 

  12. 12

    Bishop, A. R. & Lewis, W. F. A theory of intrinsic coercivity in narrow domain wall materials. J. Phys. C 12, 3811–3825 (1979)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Hilzinger, H. R. & Kronmüller, H. Spin configuration and intrinsic coercive field of narrow domain walls in Co5R-compounds. Phys. Status Solidi 54, 593–604 (1972)

    CAS  Article  Google Scholar 

  14. 14

    Egami, T. Theory of intrinsic magnetic after-effect. Phys. Status Solidi 19, 747–758 (1973)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Arnaudas, J. I., del Moral, A. & Abell, J. S. Intrinsic coercive field in pseudobinary cubic intermetallic compounds. J. Magn. Magn. Mater. 61, 370–380 (1986)

    ADS  Article  Google Scholar 

  16. 16

    Musbniskov, N. V., Andreev, A. V., Korolyov, A. V. & Shiokawa, Y. Magnetic viscosity in a UPtAl single crystal. J. Alloys Comp. 305, 188–193 (2002)

    Article  Google Scholar 

  17. 17

    Geim, A. K. et al. Ballistic Hall micromagnetometry. Appl. Phys. Lett. 71, 2379–2381 (1997)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Geim, A. K. et al. Phase transitions in individual sub-micrometre superconductors. Nature 390, 259–262 (1997)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Pisarev, R. V. et al. Optical second-harmonic generation in magnetic garnet thin films. J. Phys. 5, 8621–8628 (1993)

    CAS  Google Scholar 

  20. 20

    Pavlov, V. V., Pisarev, R. V., Kirilyuk, A. & Rasing, T. Observation of a transversal nonlinear magneto-optical effect in thin magnetic garnet films. Phys. Rev. Lett. 78, 2004–2007 (1997)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Novoselov, K. S., Geim, A. K., van der Berg, D., Dubonos, S. V. & Maan, J. C. Domain wall propagation on nanometer scale: coercivity of a single pinning center. IEEE Trans. Magn. 38, 2583–2585 (2002)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Peeters, F. M. & Li, X. Q. Hall magnetometer in the ballistic regime. Appl. Phys. Lett. 72, 572–574 (1998)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Kent, A. D., von Molnar, S., Gider, S. & Awschalom, D. D. Properties and measurement of scanning tunneling microscope fabricated ferromagnetic particle arrays. J. Appl. Phys. 76, 6656–6660 (1994)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Li, Y. Q. et al. Hall magnetometry on a single iron nanoparticle. Appl. Phys. Lett. 80, 4644–4646 (2002)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Hengstmann, T. M., Grundler, D., Heyn, C. & Heitmann, D. Stray-field investigation on permalloy nanodisks. J. Appl. Phys. 90, 6542–6544 (2001)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Schuh, D., Biberger, J., Bauer, A., Breuer, W. & Weiss, D. Hall-magnetometry on ferromagnetic dots and dot arrays. IEEE Trans. Magn. 37, 2091–2093 (2001)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Vergne, R., Cotillard, J. C. & Porteseil, J. L. Some statistical aspects of magnetization processes in ferromagnetic bodies—motion of a single 180-degrees Bloch wall in an imperfect crystalline medium. Rev. Phys. Appl. 16, 449–476 (1981)

    CAS  Article  Google Scholar 

  28. 28

    Wunderlich, J. et al. Influence of geometry on domain wall propagation in a mesoscopic wire. IEEE Trans. Magn. 37, 2104–2107 (2001)

    ADS  Article  Google Scholar 

  29. 29

    Kim, D. H., Choe, S. B. & Shin, S. C. Direct observation of Barkhausen avalanche in Co thin films. Phys. Rev. Lett. 90, 087203 (2003)

    ADS  Article  Google Scholar 

  30. 30

    Magnus, K. Vibrations (Blackie & Son, London, 1965)

    Google Scholar 

  31. 31

    Acheson, D. From Calculus to Chaos (Oxford Univ. Press, Oxford, 1997)

    MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the EPSRC (UK). We thank S. Gillott and M. Sellers for technical assistance and J. Steeds for advice on dislocation motion. S.V.D. also acknowledges support from Russian Ministry of Science and Technology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. K. Geim.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Novoselov, K., Geim, A., Dubonos, S. et al. Subatomic movements of a domain wall in the Peierls potential. Nature 426, 812–816 (2003). https://doi.org/10.1038/nature02180

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing