Drying-mediated self-assembly of nanoparticles


Systems far from equilibrium can exhibit complex transitory structures, even when equilibrium fluctuations are mundane1,2. A dramatic example of this phenomenon has recently been demonstrated for thin-film solutions of passivated nanocrystals during the irreversible evaporation of the solvent3,4,5,6,7,8,9,10,11,12,13,14. The relatively weak attractions between nanocrystals, which are efficiently screened in solution, become manifest as the solvent evaporates, initiating assembly of intricate, slowly evolving structures4. Although certain aspects of this aggregation process can be explained using thermodynamic arguments alone6, it is in principle a non-equilibrium process7. A representation of this process as arising from the phase separation between a dense nanocrystal ‘liquid’ and dilute nanocrystal ‘vapour’ captures some of the behaviour observed in experiments3, but neglects entirely the role of solvent fluctuations, which can be considerable on the nanometre length scale15. Here we present a coarse-grained model of nanoparticle self-assembly that explicitly includes the dynamics of the evaporating solvent. Simulations using this model not only account for all observed spatial and temporal patterns, but also predict network structures that have yet to be explored. Two distinct mechanisms of ordering emerge, corresponding to the homogeneous and heterogeneous limits of evaporation dynamics. Our calculations show how different choices of solvent, nanoparticle size (and identity) and thermodynamic state give rise to the various morphologies of the final structures. The resulting guide for designing statistically patterned arrays of nanoparticles suggests the possibility of fabricating spontaneously organized nanoscale devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: A sketch of the square lattice and important length scales of our mesoscopic model.
Figure 2: Self-assembled morphologies resulting from homogeneous evaporation and wetting of nanoparticle domains.
Figure 3: Dynamics of nanoparticle assembly at low coverage.
Figure 4: Self-assembled morphologies resulting from inhomogeneous evaporation in simulations and in experiments.


  1. 1

    Bray, A. J. Theory of phase-ordering kinetics. Adv. Phys. 43, 357–459 (1994)

    ADS  Article  Google Scholar 

  2. 2

    Tanaka, H. Viscoelastic phase separation. J. Phys. Condens. Matter 12, R207–R264 (2000)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Ge, G. & Brus, L. E. Evidence for spinodal phase in two-dimensional nanocrystal self-assembly. J. Phys. Chem. B 104, 9573–9575 (2000)

    CAS  Article  Google Scholar 

  4. 4

    Tang, J., Ge, G. & Brus, L. E. Gas-liquid-solid phase transition model for two-dimensional nanocrystal self-assembly on graphite. J. Phys. Chem. B 106, 5653–5658 (2002)

    CAS  Article  Google Scholar 

  5. 5

    Puntes, V. F., Krishnan, K. M. & Alivisatos, A. P. Colloidal nanocrystal shape and size control: The case of cobalt. Science 291, 2115–2117 (2001)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Gelbart, W. M., Sear, R. P., Heath, J. R. & Chaney, S. Array formation in nano-colloids: Theory and experiment in 2D. Farad. Disc. 112, 299–307 (1999)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Murray, C. B., Kagan, C. R. & Bawendi, M. G. Self-organization of CdSe nanocrystallites into 3-dimensional quantum-dot superlattices. Science 270, 1335–1338 (1995)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Freeman, R. G. et al. Self-assembled metal colloid monolayers—an approach to SERS substrates. Science 267, 1629–1632 (1995)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Andres, R. P. et al. Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters. Science 273, 1690–1693 (1996)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Harfenist, S. A., Wang, Z. L., Alvarez, M. M., Vezmar, I. & Whetten, R. L. Highly oriented molecular Ag nanocrystal arrays. J. Phys. Chem. 100, 13904–13910 (1996)

    CAS  Article  Google Scholar 

  12. 12

    Sear, R. P., Chung, S. W., Markovich, G., Gelbart, W. M. & Heath, J. R. Spontaneous patterning of quantum dots at the air-water interface. Phys. Rev. E 59, R6255–R6258 (1999)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Fried, T., Shemer, G. & Markovich, G. Ordered two-dimensional arrays of ferrite nanoparticles. Adv. Mater. 13, 1158–1161 (2001)

    CAS  Article  Google Scholar 

  14. 14

    Redl, F. X., Cho, K. S., Murray, C. B. & O'Brien, S. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 423, 968–971 (2003)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Elbaum, M. & Lipson, S. G. How does a thin wetted film dry up? Phys. Rev. Lett. 72, 3562–3565 (1994)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Chandler, D. Introduction to Modern Statistical Mechanics (Oxford Univ. Press, New York, 1987)

    Google Scholar 

  17. 17

    Ge, G. & Brus, L. E. Fast surface diffusion of large disk-shaped nanocrystal aggregates. Nano Lett. 1, 219–222 (2001)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Lo, A. & Skoodje, R. T. Kinetic and Monte Carlo models of thin film coarsening: Cross over from diffusion-coalescence to Ostwald growth modes. J. Chem. Phys. 112, 1966–1974 (2000)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Maillard, M., Motte, L., Ngo, A. T. & Pileni, M. P. Rings and hexagons made of nanocrystals: A Marangoni effect. J. Phys. Chem. B 104, 11871–11877 (2000)

    CAS  Article  Google Scholar 

  20. 20

    Witten, T. A. & Sander, L. M. Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400–1403 (1981)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Stowell, C. & Korgel, B. A. Self-assembled honeycomb networks of gold nanocrystals. Nano Lett. 1, 595–600 (2001)

    ADS  CAS  Article  Google Scholar 

Download references


This work was supported by the United States–Israel Binational Science Foundation. L.E.B. is supported by the Columbia MRSEC. P.L.G. was an MIT Science Fellow throughout most of this work. D.R.R. is a Sloan Fellow and Camille Dreyfus Teacher-Scholar.

Author information



Corresponding authors

Correspondence to Eran Rabani or David R. Reichman.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rabani, E., Reichman, D., Geissler, P. et al. Drying-mediated self-assembly of nanoparticles. Nature 426, 271–274 (2003). https://doi.org/10.1038/nature02087

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing