Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bone recognition mechanism of porcine osteocalcin from crystal structure

Abstract

Osteocalcin is the most abundant noncollagenous protein in bone1, and its concentration in serum is closely linked to bone metabolism and serves as a biological marker for the clinical assessment of bone disease2. Although its precise mechanism of action is unclear, osteocalcin influences bone mineralization3,4, in part through its ability to bind with high affinity to the mineral component of bone, hydroxyapatite5. In addition to binding to hydroxyapatite, osteocalcin functions in cell signalling and the recruitment of osteoclasts6 and osteoblasts7, which have active roles in bone resorption and deposition, respectively. Here we present the X-ray crystal structure of porcine osteocalcin at 2.0 Å resolution, which reveals a negatively charged protein surface that coordinates five calcium ions in a spatial orientation that is complementary to calcium ions in a hydroxyapatite crystal lattice. On the basis of our findings, we propose a model of osteocalcin binding to hydroxyapatite and draw parallels with other proteins that engage crystal lattices.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Structure of pOC.
Figure 2: Model of pOC engaging an HA crystal based on a Ca2+ ion lattice match.

References

  1. Hauschka, P. V., Lian, J. B., Cole, D. E. C. & Gundberg, C. M. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol. Rev. 69, 990–1047 (1989)

    CAS  Article  Google Scholar 

  2. Calvo, M. S., Eyre, D. R. & Caren, M. G. Molecular basis and clinical application of biological markers of bone turnover. Endocr. Rev. 17, 333–368 (1996)

    CAS  PubMed  Google Scholar 

  3. Hauschka, P. V. & Reid, M. L. Timed appearance of a calcium-binding protein containing γ-carboxyglutamic acid in developing chick bone. Dev. Biol. 65, 431–436 (1978)

    Article  Google Scholar 

  4. Ducy, P. et al. Increased bone formation in osteocalcin-deficient mice. Nature 382, 448–452 (1996)

    ADS  CAS  Article  Google Scholar 

  5. Poser, J. W. & Price, P. A. A method for decarboxylation of γ-carboxyglutamic acid in proteins. J. Biol. Chem. 254, 431–436 (1979)

    CAS  PubMed  Google Scholar 

  6. Chenu, C. et al. Osteocalcin induces chemotaxis, secretion of matrix proteins, and calcium-mediated intracellular signaling in human osteoclast-like cells. J. Biol. Chem. 127, 1149–1158 (1994)

    CAS  Google Scholar 

  7. Bodine, P. V. & Komm, B. S. Evidence that conditionally immortalized human osteoblasts express an osteocalcin receptor. Bone 25, 535–543 (1999)

    CAS  Article  Google Scholar 

  8. Atkinson, R. A. et al. Conformational studies of osteocalcin in solution. Eur. J. Biochem. 232, 515–521 (1995)

    CAS  Article  Google Scholar 

  9. Dowd, T. L., Rosen, J. F., Li, L. & Gundberg, C. M. The three-dimensional structure of bovine calcium ion-bound osteocalcin using 1H NMR spectroscopy. Biochemistry 42, 7769–7779 (2003)

    CAS  Article  Google Scholar 

  10. Wang, B.-C. Resolution of phase ambiguity in macromolecular crystallography. Methods Enzymol. 115, 90–112 (1985)

    CAS  Article  Google Scholar 

  11. Hohm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993)

    Article  Google Scholar 

  12. Pastoureau, P., Vergnaud, P., Meunier, P. J. & Delmas, P. D. Osteopenia and bone-remodeling abnormalities in warfarin-treated lambs. J. Bone Miner. Res. 8, 1417–1426 (1993)

    CAS  Article  Google Scholar 

  13. Kay, M. I., Young, R. A. & Posner, A. S. The crystal structure of hydroxyapatite. Nature 204, 1050–1052 (1964)

    ADS  CAS  Article  Google Scholar 

  14. Klein, C. & Hurlbut, C. S. Manual of Mineralogy 21st edn (Wiley, New York, 1999)

    Google Scholar 

  15. Onuma, K., Ito, A., Tateishi, T. & Kameyama, T. Growth kinetics of hydroxyapatite crystal revealed by atomic force microscopy. J. Cryst. Growth 154, 118–125 (1995)

    ADS  CAS  Article  Google Scholar 

  16. Eppell, S. J., Tong, W., Katz, J. L., Kuhn, L. & Glimcher, M. J. Shape and size of isolated bone mineralites measured using atomic force microscopy. J. Orthop. Res. 19, 1027–1034 (2001)

    CAS  Article  Google Scholar 

  17. Ziv, V., Wagner, H. D. & Weiner, S. Microstructure–microhardness relations in parallel-fibered and lamellar bone. Bone 18, 417–428 (1996)

    CAS  Article  Google Scholar 

  18. Davies, P. L., Baardsnes, J., Kuiper, M. J. & Walker, V. K. Structure and function of antifreeze proteins. Phil. Trans. R. Soc. Lond. B 357, 927–935 (2002)

    CAS  Article  Google Scholar 

  19. Yang, D. S. et al. Identification of the ice-binding surface on a type III antifreeze protein with a ‘flatness function’ algorithm. Biophys. J. 74, 2142–2151 (1998)

    ADS  CAS  Article  Google Scholar 

  20. Mundy, G. R. & Poser, J. W. Chemotactic activity of the γ-carboxyglutamic acid-containing protein in bone. Calcif. Tissue Int. 35, 164–168 (1983)

    CAS  Article  Google Scholar 

  21. Colombo, G., Fanti, P., Yao, C. & Halluche, H. H. Isolation and complete amino acid sequence of osteocalcin from canine bone. J. Bone Miner. Res. 8, 733–743 (1993)

    CAS  Article  Google Scholar 

  22. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    CAS  Article  Google Scholar 

  23. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999)

    CAS  Article  Google Scholar 

  24. Terwilliger, T. C. Maximum-likelihood density modification. Acta Crystallogr. D 56, 1863–1871 (1999)

    Article  Google Scholar 

  25. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  26. Brunger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    CAS  Article  Google Scholar 

  27. Kabsch, W. A solution for the best rotation to relate two sets of vectors. Acta Crystallogr. A 32, 922–923 (1976)

    ADS  Article  Google Scholar 

  28. Collaborative Computational Project Number 4. The CCP4 Suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  29. DeLano, W. L. The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, 2002)

    Google Scholar 

  30. Laue, T. M., Shah, B. D., Ridgeway, T. M. & Pelletier, S. L. Biochemistry and Polymer Science (Royal Society of Chemistry, London, 1992)

    Google Scholar 

Download references

Acknowledgements

We thank A. Viinberg for assistance with purification; M. Pereira and R. Ghirlando for help with sedimentation equilibrium data acquisition and data analysis, respectively; and W.-C. Hon for comments on the manuscript. Use of the IMCA-CAT beamline 17-ID at the Advanced Photon Source was supported by the companies of the Industrial Macromolecular Crystallography Association through a contract with Illinois Institute of Technology. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel S. C. Yang.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hoang, Q., Sicheri, F., Howard, A. et al. Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature 425, 977–980 (2003). https://doi.org/10.1038/nature02079

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02079

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing