Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The birth of a quasiparticle in silicon observed in time–frequency space

Abstract

The concept of quasiparticles in solid-state physics is an extremely powerful tool for describing complex many-body phenomena in terms of single-particle excitations1. Introducing a simple particle, such as an electron, hole or phonon, deforms a many-body system through its interactions with other particles. In this way, the added particle is ‘dressed’ or ‘renormalized’ by a self-energy cloud that describes the response of the many-body system, so forming a new entity—the quasiparticle. Using ultrafast laser techniques, it is possible to impulsively generate bare particles and observe their subsequent dressing by the many-body interactions (that is, quasiparticle formation) on the time and energy scales governed by the Heisenberg uncertainty principle2. Here we describe the coherent response of silicon to excitation with a 10-femtosecond (10-14 s) laser pulse. The optical pulse interacts with the sample by way of the complex second-order nonlinear susceptibility to generate a force on the lattice driving coherent phonon excitation. Transforming the transient reflectivity signal into frequency–time space reveals interference effects leading to the coherent phonon generation and subsequent dressing of the phonon by electron–hole pair excitations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transient electro-optic reflectivity signals for Si(001), and their continuous wavelet transforms.
Figure 2: The excitation processes that give rise to the electro-optic reflectivity signal.
Figure 3: Slices of continuous wavelet transforms (CWTs) in Fig. 1 at zero delay.

Similar content being viewed by others

References

  1. Pines, D. & Nozieres, P. Theory of Quantum Liquids (Benjamin, New York, 1966)

    MATH  Google Scholar 

  2. Huber, R. et al. How many-particle interactions develop after ultrafast excitation of an electron-hole plasma. Nature 414, 286–289 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Fischer, B. & Hofmann, K. R. A full-band Monte Carlo model for the temperature dependence of electron and hole transport in silicon. Appl. Phys. Lett. 76, 583–585 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Downer, M. C. & Shank, C. V. Ultrafast heating of silicon on sapphire by femtosecond optical pulses. Phys. Rev. Lett. 56, 761–764 (1986)

    Article  ADS  CAS  Google Scholar 

  5. Sjodin, T., Petek, H. & Dai, H.-L. Ultrafast carrier dynamics in silicon: A two-color transient reflection grating study on a (111) surface. Phys. Rev. Lett. 81, 5664–5667 (1998)

    Article  ADS  CAS  Google Scholar 

  6. Sabbah, A. J. & Riffe, D. M. Femtosecond pump-probe reflectivity study of silicon carrier dynamics. Phys. Rev. B 66, 165217 (2002)

    Article  ADS  Google Scholar 

  7. Buhleier, R., Lüpke, G., Marowsky, G., Gogolak, Z. & Kuhl, J. Anisotropic interference of degenerate four-wave mixing in crystalline silicon. Phys. Rev. B 50, 2425–2431 (1994)

    Article  ADS  CAS  Google Scholar 

  8. Bigot, J. Y., Portella, M. T., Schoenlein, R. W., Cunningham, J. E. & Shank, C. V. Two-dimensional carrier-carrier screening in a quantum well. Phys. Rev. Lett. 67, 636–639 (1991)

    Article  ADS  CAS  Google Scholar 

  9. Goldman, J. R. & Prybyla, J. A. Ultrafast dynamics of laser-excited electron distribution in silicon. Phys. Rev. Lett. 72, 1364–1367 (1994)

    Article  ADS  CAS  Google Scholar 

  10. Pfeifer, T., Dekorsky, T., Kütt, W. & Kurz, H. Generation mechanism for coherent LO phonons in surface-space-charge fields of III–V-compounds. Appl. Phys. A 55, 482–488 (1992)

    Article  ADS  Google Scholar 

  11. Saeta, P. N., Greene, B. I. & Chuang, S. L. Short terahertz pulses from semiconductor surfaces: The importance of bulk difference-frequency mixing. Appl. Phys. Lett. 63, 3482–3484 (1993)

    Article  ADS  CAS  Google Scholar 

  12. Johnston, M. B., Whittaker, D. M., Corchia, A., Davies, A. G. & Linfield, E. H. Simulation of terahertz generation at semiconductor surfaces. Phys. Rev. B 65, 165301 (2002)

    Article  ADS  Google Scholar 

  13. Khurgin, J. B. Optical rectification and teraherz emission in semiconductors excited above the band gap. J. Opt. Soc. Am. B 11, 2492–2501 (1994)

    Article  ADS  CAS  Google Scholar 

  14. Sipe, J. E., Mizrahi, V. & Stegeman, G. I. Fundamental difficulty in the use of second-harmonic generation as a strictly surface probe. Phys. Rev. B 35, 9091–9094 (1987)

    Article  ADS  CAS  Google Scholar 

  15. Caumes, J.-P., Videau, L., Rouyer, C. & Freysz, E. Kerr-like nonlinearity induced via terahertz generation and the electro-optical effect in zinc blende crystals. Phys. Rev. Lett. 89, 047401 (2002)

    Article  ADS  Google Scholar 

  16. Cerdeira, F., Fjeldly, T. A. & Cardona, M. Effect of free carriers on zone-center vibrational modes in heavily doped p-type Si II. Optical modes. Phys. Rev. B 8, 4734–4745 (1973)

    Article  ADS  CAS  Google Scholar 

  17. Scholz, R., Pfeifer, T. & Kurz, H. Density-matrix theory of coherent phonon oscillations in germanium. Phys. Rev. B 47, 16229–16236 (1993)

    Article  ADS  CAS  Google Scholar 

  18. Stevens, T. E., Kuhl, J. & Merlin, R. Coherent phonon generation and the two stimulated Raman tensors. Phys. Rev. B 65, 144304 (2002)

    Article  ADS  Google Scholar 

  19. Lautenschlager, P., Garriga, M., Viña, L. & Cardona, M. Temperature dependence of the dielectric function and interband critical points in silicon. Phys. Rev. B 36, 4821–4830 (1987)

    Article  ADS  CAS  Google Scholar 

  20. Cerdeira, F. & Cardona, M. Effect of carrier concentration on the Raman frequencies of Si and Ge. Phys. Rev. B 5, 1440–1454 (1972)

    Article  ADS  Google Scholar 

  21. Contreras, G., Sood, A. K. & Cardona, M. Raman scattering by intervalley carrier-density fluctuations in n-type Si: Intervalley and intravalley mechanisms. Phys. Rev. B 32, 924–929 (1985)

    Article  ADS  CAS  Google Scholar 

  22. Chandrasekhar, M., Rössler, U. & Cardona, M. Intra- and interband Raman scattering by free carriers in heavily doped p-Si. Phys. Rev. B 22, 761–770 (1980)

    Article  ADS  CAS  Google Scholar 

  23. Wolff, P. A. Effect of nonparabolicity on light scattering from plasmas in solids. Phys. Rev. 171, 436–444 (1968)

    Article  ADS  CAS  Google Scholar 

  24. Bairamov, B. H., Ipatova, I. P. & Voitenko, V. A. Raman scattering from current carriers in solids. Phys. Rep. 229, 221–290 (1993)

    Article  ADS  CAS  Google Scholar 

  25. Kanehisa, M. A., Wallis, R. F. & Balkanski, M. Interband electronic Raman scattering in p-silicon. Phys. Rev. B 25, 7619–7625 (1982)

    Article  ADS  CAS  Google Scholar 

  26. Belitsky, V. I., Cantarero, A., Cardona, M., Trallero-Giner, C. & Pavlov, S. T. Feynman diagrams and Fano interference in light scattering from doped semiconductors. J. Phys. Condens. Matter 9, 5965–5976 (1997)

    Article  ADS  CAS  Google Scholar 

  27. Lautenschlager, P., Allen, P. B. & Cardona, M. Phonon-induced lifetime broadenings of electronic states and critical points in Si and Ge. Phys. Rev. B 33, 5501–5511 (1986)

    Article  ADS  CAS  Google Scholar 

  28. Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961)

    Article  ADS  CAS  Google Scholar 

  29. Balkanski, M., Jain, K. P., Beserman, R. & Jouanne, M. Theory of interference distortion of Raman scattering line shapes in semiconductors. Phys. Rev. B 12, 4328–4337 (1975)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Boyanovsky, A. P. Heberle, K. Ishioka and J. Shan for discussions. This work was supported by the NSF, the University of Pittsburgh, a Grant-in-Aid for Scientific Research from MEXT of Japan, and NIMS Research Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hrvoje Petek.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hase, M., Kitajima, M., Constantinescu, A. et al. The birth of a quasiparticle in silicon observed in time–frequency space. Nature 426, 51–54 (2003). https://doi.org/10.1038/nature02044

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02044

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing