Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enantiospecific electrodeposition of a chiral catalyst

Abstract

Many biomolecules are chiral—they can exist in one of two enantiomeric forms that only differ in that their structures are mirror images of each other. Because only one enantiomer tends to be physiologically active while the other is inactive or even toxic, drug compounds are increasingly produced in an enantiomerically pure form1 using solution-phase homogeneous catalysts and enzymes. Chiral surfaces offer the possibility of developing heterogeneous enantioselective catalysts that can more readily be separated from the products and reused. In addition, such surfaces might serve as electrochemical sensors for chiral molecules. To date, chiral surfaces have been obtained by adsorbing chiral molecules2,3,4,5,6 or slicing single crystals so that they exhibit high-index faces7,8,9,10,11,12,13, and some of these surfaces act as enantioselective heterogeneous catalysts5,6,10. Here we show that chiral surfaces can also be produced through electrodeposition, a relatively simple solution-based process that resembles biomineralization14,15,16,17 in that organic molecules adsorbed on surfaces have profound effects on the morphology of the inorganic deposits18,19,20. When electrodepositing a copper oxide film on an achiral gold surface in the presence of tartrate ion in the deposition solution, the chirality of the ion determines the chirality of the deposited film, which in turn determines the film's enantiospecificity during subsequent electrochemical oxidation reactions.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: X-ray diffraction of electrodeposited CuO.
Figure 2: Determination of the absolute configuration of chiral CuO. X-ray pole figures of CuO films on Au(001) deposited from a, Cu(ii)(S,S-tartrate), b, Cu(ii)(R,R-tartrate), and c, racemic Cu(ii)(tartrate).
Figure 3: Outline of the enantiospecific electrodeposition scheme.
Figure 4: Chiral recognition by electrodeposited CuO.

References

  1. Stinson, S. C. Chiral pharmaceuticals. Chem. Eng. News 79, 79–97 (2001)

    Article  Google Scholar 

  2. Lorenzo, M. O., Baddeley, C. J., Muryn, C. & Raval, R. Extended surface chirality from supramolecular assemblies of adsorbed chiral molecules. Nature 404, 376–379 (2000)

    ADS  CAS  Article  Google Scholar 

  3. Humblot, V., Haq, S., Muryn, C., Hofer, W. A. & Raval, R. From local adsorption stresses to chiral surfaces: (R,R)-tartaric acid on Ni(110). J. Am. Chem. Soc. 124, 503–510 (2002)

    CAS  Article  Google Scholar 

  4. Kühnle, A., Linderoth, T. R., Hammer, B. & Besenbacher, F. Chiral recognition in dimerization of adsorbed cysteine observed by scanning tunnelling microscopy. Nature 415, 891–893 (2002)

    ADS  Article  Google Scholar 

  5. Izumi, Y. in Advances in Catalysis Vol. 32, 215–271 (Academic, New York, 1983)

    Google Scholar 

  6. LeBlond, C., Wang, J., Liu, J., Andrews, A. T. & Sun, Y.-K. Highly enantioselective heterogeneously catalyzed hydrogenation of α-ketoesters under mild conditions. J. Am. Chem. Soc. 121, 4920–4921 (1999)

    CAS  Article  Google Scholar 

  7. McFadden, C. F., Cremer, P. S. & Gellman, A. J. Adsorption of chiral alcohols on “chiral” metal surfaces. Langmuir 12, 2483–2487 (1996)

    CAS  Article  Google Scholar 

  8. Horvath, J. D. & Gellman, A. J. Enantiospecific desorption of R- and S-propylene oxide from a chiral Cu(643) surface. J. Am. Chem. Soc. 123, 7953–7954 (2001)

    CAS  Article  Google Scholar 

  9. Horvath, J. D. & Gellman, A. J. Enantiospecific desorption of chiral compounds from chiral Cu(643) and achiral Cu(111) surfaces. J. Am. Chem. Soc. 124, 2384–2392 (2002)

    CAS  Article  Google Scholar 

  10. Ahmadi, A., Attard, G., Feliu, J. & Rodes, A. Surface reactivity at “chiral” platinum surfaces. Langmuir 15, 2420–2424 (1999)

    CAS  Article  Google Scholar 

  11. Attard, G. A. et al. Temperature effects in the enantiomeric electro-oxidation of D- and L-glucose on Pt{643}S. J. Phys. Chem. B 103, 1381–1385 (1999)

    CAS  Article  Google Scholar 

  12. Attard, G. A. Electrochemical studies of enantioselectivity of chiral metal surfaces. J. Phys. Chem. B 105, 3158–3167 (2001)

    CAS  Article  Google Scholar 

  13. Sholl, D. S., Asthagiri, A. & Power, T. D. Naturally chiral metal surfaces as enantiospecific adsorbents. J. Phys. Chem. B 105, 4771–4782 (2001)

    CAS  Article  Google Scholar 

  14. Orme, C. A. et al. Formation of chiral morphologies through selective binding of amino acids to calcite surface steps. Nature 411, 775–779 (2001)

    ADS  CAS  Article  Google Scholar 

  15. Addadi, L. & Weiner, S. Crystals, asymmetry and life. Nature 411, 753–755 (2001)

    ADS  CAS  Article  Google Scholar 

  16. Teng, H. H., Dove, P. M., Orme, C. A. & De Yoreo, J. J. Thermodynamics of calcite growth: baseline for understanding biomineral formation. Science 282, 724–727 (1998)

    ADS  CAS  Article  Google Scholar 

  17. Cody, A. M. & Cody, R. D. Chiral habit modifications of gypsum from epitaxial-like adsorption of stereospecific growth inhibitors. J. Cryst. Growth 113, 508–519 (1991)

    ADS  CAS  Article  Google Scholar 

  18. Paunovic, M. & Schlesinger, M. Fundamentals of Electrochemical Deposition 167–186 (Wiley-Interscience, New York, 1998)

    Google Scholar 

  19. Josell, D., Wheeler, D., Huber, W. H. & Moffat, T. P. Superconformal electrodeposition in submicron features. Phys. Rev. Lett. 87, 016102 (2001)

    ADS  CAS  Article  Google Scholar 

  20. Vazhev, V. V. & Mardashev, Yu. S. A “memory” effect in formic and oxalic acid oxidation at gold electrodes. Sov. Electrochem. 16, 1445–1447 (1980)

    Google Scholar 

  21. Switzer, J. A., Shumsky, M. G. & Bohannan, E. W. Electrodeposited ceramic single crystals. Science 284, 293–296 (1999)

    ADS  CAS  Article  Google Scholar 

  22. Bohannan, E. W., Shumsky, M. G. & Switzer, J. A. Epitaxial electrodeposition of copper(I) oxide on single-crystal Au(100). Chem. Mater. 11, 2289–2291 (1999)

    CAS  Article  Google Scholar 

  23. Sorenson, T. A., Morton, S. A., Waddill, G. D. & Switzer, J. A. Epitaxial electrodeposition of Fe3O4 thin films on the low-index planes of gold. J. Am. Chem. Soc. 124, 7604–7609 (2002)

    CAS  Article  Google Scholar 

  24. Switzer, J. A., Kothari, H. M. & Bohannan, E. W. Thermodynamic to kinetic transition in epitaxial electrodeposition. J. Phys. Chem. B 106, 4027–4031 (2002)

    CAS  Article  Google Scholar 

  25. Switzer, J. A., Liu, R., Bohannan, E. W. & Ernst, F. Epitaxial electrodeposition of a crystalline metal oxide onto single-crystalline silicon. J. Phys. Chem. B 106, 12369–12372 (2002)

    CAS  Article  Google Scholar 

  26. Poizot, P., Hung, C.-J., Nikiforov, M. P., Bohannan, E. W. & Switzer, J. A. An electrochemical method for CuO thin film deposition from aqueous solution. Electrochem. Solid-State Lett. 6, C21–C25 (2003)

    CAS  Article  Google Scholar 

  27. Catana, A., Locquet, J.-P., Paik, S. M. & Schuller, I. K. Local epitaxial growth of copper monoxide films on magnesium oxide. Phys. Rev. B 46, 15477–15483 (1992)

    ADS  CAS  Article  Google Scholar 

  28. Missavage, R. J., Belford, R. L. & Paul, I. C. Crystal and molecular structure of tetrasodium dicopper(ii)-dl-tartrate decahydrate. J. Coord. Chem. 2, 145–157 (1972)

    CAS  Article  Google Scholar 

  29. Hazen, R. M., Filley, T. R. & Goodfriend, G. A. Selective adsorption of L- and D-amino acids on calcite: Implications for biochemical homochirality. Proc. Natl Acad. Sci. USA 98, 5487–5490 (2001)

    ADS  CAS  Article  Google Scholar 

  30. Xie, Y. & Huber, C. O. Electrocatalysis and amperometric detection using an electrode made of copper oxide and carbon paste. Anal. Chem. 63, 1714–1719 (1991)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation and the University of Missouri Research Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay A. Switzer.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Switzer, J., Kothari, H., Poizot, P. et al. Enantiospecific electrodeposition of a chiral catalyst. Nature 425, 490–493 (2003). https://doi.org/10.1038/nature01990

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01990

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing