Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Phagosomes are competent organelles for antigen cross-presentation


The ability to process microbial antigens and present them at the surface of cells is an important aspect of our innate ability to clear infections. It is generally accepted that antigens in the cytoplasm are loaded in the endoplasmic reticulum and presented at the cell surface on major histocompatibility complex (MHC) class I molecules, whereas peptides present in endo/phagocytic compartments are presented on MHC class II molecules1,2. Despite the apparent segregation of the class I and class II pathways, antigens from intracellular pathogens including mycobacteria, Escherichia coli, Salmonella typhimurium, Brucella abortus and Leishmania, have been shown to elicit an MHC class-I-dependent CD8+ T-cell response3,4,5,6,7, a process referred to as cross-presentation2. The cellular mechanisms allowing the cross-presentation pathway are poorly understood. Here we show that phagosomes display the elements and properties needed to be self-sufficient for the cross-presentation of exogenous antigens, a newly ascribed function linked to phagocytosis mediated by the endoplasmic reticulum.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Exogenous proteins internalized by phagocytosis are retrotranslocated to the cytoplasmic side of phagosomes.
Figure 2: Proteasomes are present on phagosomes.
Figure 3: Ubiquitinated proteins associate with proteasomes on the cytoplasmic side of phagosomes.
Figure 4: Exogenous proteins loaded in phagosomes can be presented by MHC class I complexes at the surface of macrophages and trigger a TAP-dependent CD8+ T-cell response.


  1. Watts, C. & Amigorena, S. Phagocytosis and antigen presentation. Semin. Immunol. 13, 373–379 (2001)

    CAS  Article  Google Scholar 

  2. Heath, W. R. & Carbone, F. R. Cross-presentation in viral immunity and self-tolerance. Nature Rev. Immunol. 1, 126–134 (2001)

    CAS  Article  Google Scholar 

  3. Pfeifer, J. D. et al. Phagocytic processing of bacterial antigens for class I MHC presentation to T cells. Nature 361, 359–362 (1993)

    ADS  CAS  Article  Google Scholar 

  4. Oliveira, S. C. & Splitter, G. A. CD8 + type 1 CD44hi CD45 RBlo T lymphocytes control intracellular Brucella abortus infection as demonstrated in major histocompatibility complex class I- and class II-deficient mice. Eur. J. Immunol. 25, 2551–2557 (1995)

    CAS  Article  Google Scholar 

  5. Turner, J. & Dockrell, H. M. Stimulation of human peripheral blood mononuclear cells with live Mycobacterium bovis BCG activates cytolytic CD8 + T cells in vitro. Immunology 87, 339–342 (1996)

    CAS  Article  Google Scholar 

  6. Canaday, D. H. et al. Activation of human CD8 + alpha beta TCR + cells by Mycobacterium tuberculosis via an alternate class I MHC antigen-processing pathway. J. Immunol. 162, 372–379 (1999)

    CAS  PubMed  Google Scholar 

  7. Belkaid, Y. et al. CD8 + T cells are required for primary immunity in C57BL/6 mice following low-dose, intradermal challenge with Leishmania major. J. Immunol. 168, 3992–4000 (2002)

    CAS  Article  Google Scholar 

  8. Kovacsovics-Bankowski, M. & Rock, K. L. A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science 267, 243–246 (1995)

    ADS  CAS  Article  Google Scholar 

  9. Rodriguez, A., Regnault, A., Kleijmeer, M., Ricciardi-Castagnoli, P. & Amigorena, S. Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells. Nature Cell Biol. 1, 362–368 (1999)

    CAS  Article  Google Scholar 

  10. Gagnon, E. et al. Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell 110, 119–131 (2002)

    CAS  Article  Google Scholar 

  11. Wiertz, E. J. et al. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384, 432–438 (1996)

    ADS  CAS  Article  Google Scholar 

  12. Tirosh, B., Furman, M. H., Tortorella, D. & Ploegh, H. L. Protein unfolding is not a prerequisite for ER-to-cytosol dislocation. J. Biol. Chem. 278, 6664–6672 (2003)

    CAS  Article  Google Scholar 

  13. Schmitz, A., Herrgen, H., Winkeler, A. & Herzog, V. Cholera toxin is exported from microsomes by the Sec61p complex. J. Cell Biol. 148, 1203–1212 (2000)

    CAS  Article  Google Scholar 

  14. Rodriguez, A., Regnault, A., Kleijmeer, M., Ricciardi-Castagnoli, P. & Amigorena, S. Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells. Nature Cell Biol. 1, 362–368 (1999)

    CAS  Article  Google Scholar 

  15. Hazes, B. & Read, R. J. Accumulating evidence suggests that several AB-toxins subvert the endoplasmic reticulum-associated protein degradation pathway to enter target cells. Biochemistry 36, 11051–11054 (1997)

    CAS  Article  Google Scholar 

  16. Rivett, A. J., Palmer, A. & Knecht, E. Electron microscopic localization of the multicatalytic proteinase complex in rat liver and in cultured cells. J. Histochem. Cytochem. 40, 1165–1172 (1992)

    CAS  Article  Google Scholar 

  17. Brooks, P., Murray, R. Z., Mason, G. G., Hendil, K. B. & Rivett, A. J. Association of immunoproteasomes with the endoplasmic reticulum. Biochem. J. 352, 611–615 (2000)

    CAS  Article  Google Scholar 

  18. Dermine, J. F. et al. Flotillin-1-enriched lipid raft domains accumulate on maturing phagosomes. J. Biol. Chem. 276, 18507–18512 (2001)

    CAS  Article  Google Scholar 

  19. Schagger, H., Cramer, W. A. & von Jagow, G. Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal. Biochem. 217, 220–230 (1994)

    CAS  Article  Google Scholar 

  20. Porgador, A., Yewdell, J. W., Deng, Y., Bennink, J. R. & Germain, R. N. Localization, quantitation, and in situ detection of specific peptide-MHC class I complexes using a monoclonal antibody. Immunity 6, 715–726 (1997)

    CAS  Article  Google Scholar 

  21. Princiotta, M. F. et al. Quantitating protein synthesis, degradation, and endogenous antigen processing. Immunity 18, 343–354 (2003)

    CAS  Article  Google Scholar 

  22. MacAry, P. A. et al. Mobilization of MHC class I molecules from late endosomes to the cell surface following activation of CD34-derived human Langerhans cells. Proc. Natl Acad. Sci. USA 98, 3982–3987 (2001)

    ADS  CAS  Article  Google Scholar 

  23. Ramachandra, L., Song, R. & Harding, C. V. Phagosomes are fully competent antigen-processing organelles that mediate the formation of peptide:class II MHC complexes. J. Immunol. 162, 3263–3272 (1999)

    CAS  PubMed  Google Scholar 

  24. Garin, J. et al. The phagosome proteome: insight into phagosome functions. J. Cell Biol. 152, 165–180 (2001)

    CAS  Article  Google Scholar 

  25. Muno, D., Kominami, E. & Mizuochi, T. Generation of both MHC class I- and class II-restricted antigenic peptides from exogenously added ovalbumin in murine phagosomes. FEBS Lett. 478, 178–182 (2000)

    CAS  Article  Google Scholar 

  26. Lennon-Dumenil, A. M. et al. Analysis of protease activity in live antigen-presenting cells shows regulation of the phagosomal proteolytic contents during dendritic cell activation. J. Exp. Med. 196, 529–540 (2002)

    CAS  Article  Google Scholar 

  27. Tsai, B., Ye, Y. & Rapoport, T. A. Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nature Rev. Mol. Cell Biol. 3, 246–255 (2002)

    CAS  Article  Google Scholar 

  28. Mahnke, K. et al. The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. J. Cell Biol. 151, 673–684 (2000)

    CAS  Article  Google Scholar 

  29. Guermonprez, P. et al. ER–phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature 425, 397–402 (2003)

    ADS  CAS  Article  Google Scholar 

  30. Kovacsovics-Bankowski, M., Clark, K., Benacerraf, B. & Rock, K. L. Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages. Proc. Natl Acad. Sci. USA 90, 4942–4946 (1993)

    ADS  CAS  Article  Google Scholar 

Download references


We thank C. Rondeau, S. Tessier and A. Carrier for technical assistance and G. Milon for discussions. We thank K. Rock for the BMA3.1A and BMC2 cell lines. We also thank D. Boismenu and J. Bergeron from the Montreal Proteomics Network for help with the mass spectrometry analyses of the blue native gel samples. This work was supported by the Canadian Institute for Health Research, Genome Canada/Québec (M.D.), and the NIH (D.S.).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Michel Desjardins.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Houde, M., Bertholet, S., Gagnon, E. et al. Phagosomes are competent organelles for antigen cross-presentation. Nature 425, 402–406 (2003).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing