Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa


Although the effects of climate warming on the chemical and physical properties of lakes have been documented1, biotic and ecosystem-scale responses to climate change have been only estimated or predicted by manipulations and models1. Here we present evidence that climate warming is diminishing productivity in Lake Tanganyika, East Africa. This lake has historically supported a highly productive pelagic fishery that currently provides 25–40% of the animal protein supply for the populations of the surrounding countries2. In parallel with regional warming patterns since the beginning of the twentieth century, a rise in surface-water temperature has increased the stability of the water column. A regional decrease in wind velocity has contributed to reduced mixing, decreasing deep-water nutrient upwelling and entrainment into surface waters. Carbon isotope records in sediment cores suggest that primary productivity may have decreased by about 20%, implying a roughly 30% decrease in fish yields. Our study provides evidence that the impact of regional effects of global climate change on aquatic ecosystem functions and services can be larger than that of local anthropogenic activity or overfishing.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Historical meteorological records for the north (open circles) and south (filled circles) of Lake Tanganyika.
Figure 2: Historical and recent limnological measurements from the middle basin of Lake Tanganyika.
Figure 3: Carbon isotope records in sediment cores. δ13C values indicate a post- 1950s trend towards more negative values in all cores.


  1. McKnight, D., Brakke, D. F. & Mulholland, P. J. (eds) Freshwater ecosystems and climate change in North America. Limnol. Oceanogr 41 (special issue) 815–1149 (1996)

  2. Molsa, H., Reynolds, J. E., Coenen, E. J. & Lindqvist, O. V. Fisheries research toward resource management on Lake Tanganyika. Hydrobiologia 407, 1–24 (1999)

    Article  Google Scholar 

  3. Nixon, S. W. Physical energy inputs and the comparative ecology of lake and marine ecosystems. Limnol. Oceanogr. 33, 1005–1025 (1988)

    ADS  CAS  Google Scholar 

  4. Coulter, G. W. (ed.) Lake Tanganyika and its Life (Oxford Univ. Press, New York, 1991)

  5. Plisnier, P.-D. et al. Limnological annual cycle inferred from physical–chemical fluctuations at three stations of Lake Tanganyika. Hydrobiologia 407, 45–58 (1999)

    Article  CAS  Google Scholar 

  6. O'Reilly, C. M., Hecky, R. E., Cohen, A. S. & Plisnier, P.-D. Interpreting stable isotopes in food webs: recognizing the role of time-averaging at different trophic levels. Limnol. Oceanogr. 47, 306–309 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Houghton, J. T. et al. in Climate Change 2001: The Scientific Basis, Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, Cambridge, 2001)

  8. Goddard, L. & Graham, N. E. Importance of the Indian Ocean for simulating rainfall anomalies over eastern and southern Africa. J. Geophys. Res. 104, 19099–19116 (1999)

    Article  ADS  Google Scholar 

  9. Hulme, M., Doherty, R., Ngara, T., New, M. & Lister, D. African climate change: 1900–2100. Climate Res. 17, 145–168 (2001)

    Article  ADS  Google Scholar 

  10. Marquardsen, H. Die Seen Tanganjika. Moero und Bangweolo. Mitteilungen aus den Deutschen Schutzgebieten Berlin 29, 97–98 (1916)

    Google Scholar 

  11. Beauchamp, R. S. A. Hydrology of Lake Tanganyika. Internationale Revue der Gesamten Hydrogiologie und Hydrographie 39, 316–353 (1939)

    Article  Google Scholar 

  12. Van Meel, L. Contribution à la Limnologie de Quatre Grands Lacs du Zaïre Oriental: Tanganyika, Kivu, Mobutu Sese Seko (ex Albert), Idi Amin Dada (ex Edouard). Les Paramètres Chimiques, Fascicule A: Le Lac Tanganika 1 (Institut Royal des Sciences Naturelles de Belgique, Brussels, Belgium, 1987)

    Google Scholar 

  13. Van Meel, L. Contribution à la Limnologie de Quatre Grands Lacs du Zaïre Oriental: Tanganyika, Kivu, Mobutu Sese Seko (ex Albert), Idi Amin Dada (ex Edouard). Les Paramètres Chimiques, Fascicule B: Le Lac Tanganika 2 (Institut Royal des Sciences Naturelles de Belgique, Brussels, Belgium, 1987)

    Google Scholar 

  14. Degens, E. T., von Herzen, R. P. & Wong, H.-K. Lake Tanganyika: water chemistry, sediments, geological structure. Naturwissenschaften 58, 229–241 (1971)

    Article  ADS  CAS  Google Scholar 

  15. Craig, H. Lake Tanganyika Geochemical and Hydrographic Study: 1973 Expedition (Univ. California, San Diego, 1974)

    Google Scholar 

  16. Edmond, J. M. et al. Nutrient chemistry of the water column of Lake Tanganyika. Limnol. Oceanogr. 38, 725–738 (1993)

    Article  ADS  CAS  Google Scholar 

  17. Hecky, R. E. et al. Deoxygenation of the deep-water of Lake Victoria, East-Africa. Limnol. Oceanogr. 39, 1476–1481 (1994)

    Article  ADS  CAS  Google Scholar 

  18. Beauchamp, R. S. A. Hydrological data from Lake Nyasa. J. Ecol. 41, 226–239 (1953)

    Article  Google Scholar 

  19. Patterson, G. & Kachinjika, O. in The Fishery Potential and Productivity of the Pelagic Zone of Lake Malawi (ed. Menz, A.) 1–68 (Natural Resources Institute, Chatham, UK, 1995)

    Google Scholar 

  20. Lehman, J. T., Litt, A. H., Mugidde, R. & Lehman, D. A. in Environmental Change and Response in East African Lakes (ed. Lehman, J. T.) 157–172 (Amsterdam, Kluwer, 1998)

    Google Scholar 

  21. Verburg, P. et al. Hydrodynamics of Lake Tanganyika and Meteorological Results (FAO/FINNIDA Research for the Tanganyika Management of Fisheries on Lake Tanganyika, Bujumbura, Burundi, 1997)

    Google Scholar 

  22. Idso, S. B. On the concept of lake stability. Limnol. Oceanogr. 18, 681–683 (1973)

    Article  ADS  Google Scholar 

  23. Dubois, J. T. Evolution de la temperature, de l'oxygene dissous et de la transparence dans la baie nord du Lac Tanganyika. Hydrobiologia 10, 215–240 (1958)

    Article  Google Scholar 

  24. Meyers, P. A. & Ishiwatari, R. Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Org. Geochem. 20, 867–900 (1993)

    Article  CAS  Google Scholar 

  25. Popp, B. N. et al. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochim. Cosmochim. Acta 62, 69–77 (1998)

    Article  ADS  CAS  Google Scholar 

  26. Hodell, D. A. & Schelske, C. L. Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnol. Oceanogr. 43, 200–214 (1998)

    Article  ADS  CAS  Google Scholar 

  27. Brenner, M., Whitmore, T. J., Curtis, J. H., Hodell, D. A. & Schelske, C. L. Stable isotope (δ13C and δ15N) signatures of sedimented organic matter as indicators of historic lake trophic state. J. Paleolimnol. 22, 205–221 (1999)

    Article  ADS  Google Scholar 

  28. Shirakihara, K., Use, K., Kamikawa, S. & Mambona, W. B. Population changes of sardines in northern Lake Tanganyika. African Study Monogr. 13, 57–67 (1992)

    Google Scholar 

  29. Mannini, P. Geographical Distribution Patterns of Pelagic Fish and Macrozooplankton in Lake Tanganyika (FAO/FINNIDA Research for the Management of Fisheries on Lake Tanganyika, Bujumbura, Burundi, 1998)

    Google Scholar 

  30. van Zwieten, P. A. M., Roest, F. C., Machiels, M. A. M. & van Densen, W. L. T. Effects of inter-annual variability, seasonality and persistence on the perception of long-term trends in catch rates of the industrial pelagic purse-seine fishery of northern Lake Tanganyika (Burundi). Fisheries Res. 54, 329–348 (2002)

    Article  Google Scholar 

  31. Talbot, M. R. & Johannessen, T. A high resolution palaeoclimatic record for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotope composition of lacustrine organic matter. Earth Planet. Sci. Lett. 110, 23–37 (1992)

    Article  ADS  CAS  Google Scholar 

Download references


We thank M. O'Reilly for assistance with stability calculations, and M. Brenner, P. Brooks, and J. McManus for comments on the manuscript. The Tanzanian Commission for Science and the Tanzanian Immigration Agency provided research permits, and the Tanzania Fisheries Research Institute and the crew of the R/V Explorer provided field assistance. This work was funded by the National Science Foundation, Food and Agriculture Organization (FAO)/FINNIDA Research for the Management of the Fisheries of Lake Tanganyika Project, United Nations/Global Environment Facility Lake Tanganyika Biodiversity Project, University of Arizona Graduate College, Sigma Xi, Geological Society of America, and Office for Scientific, Technical and Cultural Affairs of the Prime Minister of Belgium.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Catherine M. O'Reilly.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information


Supplementary Figure 1: 210Pb dating of cores LT-98-37M, LT-98-58M, LT-98-82M and Table 2 Carbon-14 dating of core LT-97-56V. (PDF 120 kb)

Supplementary Figure 2: Geochemical relationships in the cores do not indicate diagenesis. (PDF 100 kb)

Supplementary Figure 3: Percent carbon declines in the mid-1900s. (PDF 49 kb)


Supplementary Figure 4: Consideration of the Suess effect does not eliminate the trend towards more negative carbon isotope ratios. (PDF 98 kb)


Supplementary Figure 5: C:N ratios in the cores do not indicate changes in the input of terrestrial organic matter in the mid-1900s. (PDF 48 kb)


Supplementary Figure 6: Nitrogen stable isotopes in the cores do not indicate changes in phytoplankton community composition toward increased N-fixation. (PDF 93 kb)

Supplementary Figure 7: Sediment mass accumulation rates do not vary significantly in the mid-1900s. (PDF 47 kb)

Supplementary Table 1: Core locations and watershed descriptions. (PDF 45 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

O'Reilly, C., Alin, S., Plisnier, PD. et al. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature 424, 766–768 (2003).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing