Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin


Mechanical forces on matrix–integrin–cytoskeleton linkages are crucial for cell viability, morphology and organ function1. The production of force depends on the molecular connections from extracellular-matrix–integrin complexes to the cytoskeleton2,3. The minimal matrix complex causing integrin–cytoskeleton connections is a trimer of fibronectin's integrin-binding domain FNIII7-10 (ref. 4). Here we report a specific, molecular slip bond that was broken repeatedly by a force of 2 pN at the cellular loading rate of 60 nm s-1; this occurred with single trimer beads but not with monomer. Talin1, which binds to both integrins and actin filaments in vitro, is required for the 2-pN slip bond and rapid cytoskeleton binding. Further, inhibition of fibronectin binding to αvβ3 and deletion of β3 markedly decreases the 2-pN force peak. We suggest that talin1 initially forms a molecular slip bond between closely packed fibronectin–integrin complexes and the actin cytoskeleton, which can apply a low level of force to fibronectin until many bonds form or a signal is received to activate a force response.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: A discrete fibronectin trimer–αvβ3 integrin linkage was broken by 2 pN.
Figure 2: The 2-pN force peak requires talin1.
Figure 3: The 2-pN force peak was observed in three different cell lines.


  1. Geiger, B. & Bershadsky, A. Assembly and mechanosensory function of focal contacts. Curr. Opin. Cell Biol. 13, 584–592 (2001)

    Article  CAS  Google Scholar 

  2. Critchley, D. R. Focal adhesions—the cytoskeletal connection. Curr. Opin. Cell Biol. 12, 133–139 (2000)

    Article  CAS  Google Scholar 

  3. Sheetz, M. P., Felsenfeld, D. P. & Galbraith, C. G. Cell migration: Regulation of force on extracellular–matrix–integrin complexes. Trends Cell Biol. 8, 51–54 (1998)

    Article  CAS  Google Scholar 

  4. Coussen, F., Choquet, D., Sheetz, M. P. & Erickson, H. P. Trimers of the fibronectin cell adhesion domain localize to actin filament bundles and undergo rearward translocation. J. Cell Sci. 115, 2581–2590 (2002)

    CAS  PubMed  Google Scholar 

  5. Lauffenburger, D. A. & Horwitz, A. F. Cell migration: A physically integrated molecular process. Cell 84, 359–369 (1996)

    Article  CAS  Google Scholar 

  6. Riveline, D. et al. Focal contacts as mechanosensors: Externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK- independent mechanism. J. Cell Biol. 153, 1175–1186 (2001)

    Article  CAS  Google Scholar 

  7. Galbraith, C. G., Yamada, K. M. & Sheetz, M. P. The relationship between force and focal complex development. J. Cell Biol. 159, 695–705 (2002)

    Article  CAS  Google Scholar 

  8. Choquet, D., Felsenfeld, D. P. & Sheetz, M. P. Extracellular matrix rigidity causes strengthening of integrin–cytoskeleton linkages. Cell 88, 39–48 (1997)

    Article  CAS  Google Scholar 

  9. Sonnenberg, A. Integrins and their ligands. Curr. Top. Microbiol. Immunol. 184, 7–35 (1993)

    CAS  PubMed  Google Scholar 

  10. Pierschbacher, M. D. & Ruoslahti, E. Influence of stereochemistry of the sequence Arg-Gly-Asp-Xaa on binding specificity in cell adhesion. J. Biol. Chem. 262, 17294–17298 (1987)

    CAS  PubMed  Google Scholar 

  11. Thoumine, O., Kocian, P., Kottelat, A. & Meister, J. J. Short-term binding of fibroblasts to fibronectin: Optical tweezers experiments and probabilistic analysis. Eur. Biophys. J. 29, 398–408 (2000)

    Article  CAS  Google Scholar 

  12. Litvinov, R. I., Shuman, H., Bennett, J. S. & Weisel, J. W. Binding strength and activation state of single fibrinogen–integrin pairs on living cells. Proc. Natl Acad. Sci. USA 99, 7426–7431 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Finer, J. T., Mehta, A. D. & Spudich, J. A. Characterization of single actin–myosin interactions. Biophys. J. 68, 291S–296S (1995)

    Article  CAS  Google Scholar 

  14. Nishizaka, T., Miyata, H., Yoshikawa, H., Ishiwata, S. & Kinosita, K. Jr Unbinding force of a single motor molecule of muscle measured using optical tweezers. Nature 377, 251–254 (1995)

    Article  ADS  CAS  Google Scholar 

  15. Suzuki, K. & Sheetz, M. P. Binding of cross-linked glycosylphosphatidylinositol-anchored proteins to discrete actin-associated sites and cholesterol-dependent domains. Biophys. J. 81, 2181–2189 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Giannone, G., Jiang, G., Sutton, D. H., Critchley, D. R. & Sheetz, M. P. Talin1 is essential for force-dependent reinforcement of integrin–cytoskeleton connections but not for activation of tyrosine kinases. J. Cell Biol. (submitted)

  17. Calderwood, D. A. et al. The Talin head domain binds to integrin beta subunit cytoplasmic tails and regulates integrin activation. J. Biol. Chem. 274, 28071–28074 (1999)

    Article  CAS  Google Scholar 

  18. Brown, N. H. et al. Talin is essential for integrin function in Drosophila. Dev. Cell 3, 569–579 (2002)

    Article  CAS  Google Scholar 

  19. Nishizaka, T., Shi, Q. & Sheetz, M. P. Position-dependent linkages of fibronectin–integrin–cytoskeleton. Proc. Natl Acad. Sci. USA 97, 692–697 (2000)

    Article  ADS  CAS  Google Scholar 

  20. von Wichert, G. et al. RPTP-α acts as a transducer of mechanical force on αv/β3–integrin–cytoskeleton linkages. J. Cell Biol. 161, 143–153 (2003)

    Article  CAS  Google Scholar 

  21. Su, J., Muranjan, M. & Sap, J. Receptor protein tyrosine phosphatase α activates Src-family kinases and controls integrin-mediated responses in fibroblasts. Curr. Biol. 9, 505–511 (1999)

    Article  CAS  Google Scholar 

  22. Balaban, N. Q. et al. Force and focal adhesion assembly: A close relationship studied using elastic micropatterned substrates. Nature Cell Biol. 3, 466–472 (2001)

    Article  CAS  Google Scholar 

  23. Watanabe, K. et al. Molecular mechanics of cardiac titin's PEVK and N2B spring elements. J. Biol. Chem. 277, 11549–11558 (2002)

    Article  CAS  Google Scholar 

  24. Oberhauser, A. F., Marszalek, P. E., Erickson, H. P. & Fernandez, J. M. The molecular elasticity of the extracellular matrix protein tenascin. Nature 393, 181–185 (1998)

    Article  ADS  CAS  Google Scholar 

  25. Carrion-Vazquez, M. et al. Mechanical and chemical unfolding of a single protein: A comparison. Proc. Natl Acad. Sci. USA 96, 3694–3699 (1999)

    Article  ADS  CAS  Google Scholar 

  26. Merkel, R., Nassoy, P., Leung, A., Ritchie, K. & Evans, E. Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy. Nature 397, 50–53 (1999)

    Article  ADS  CAS  Google Scholar 

  27. Xing, B., Jedsadayanmata, A. & Lam, S. C. Localization of an integrin binding site to the C terminus of talin. J. Biol. Chem. 276, 44373–44378 (2001)

    Article  CAS  Google Scholar 

  28. Hodivala-Dilke, K. M. et al. β3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J. Clin. Invest. 103, 229–238 (1999)

    Article  CAS  Google Scholar 

  29. Priddle, H. et al. Disruption of the talin gene compromises focal adhesion assembly in undifferentiated but not differentiated embryonic stem cells. J. Cell Biol. 142, 1121–1133 (1998)

    Article  CAS  Google Scholar 

  30. Felsenfeld, D. P., Choquet, D. & Sheetz, M. P. Ligand binding regulates the directed movement of β1 integrins on fibroblasts. Nature 383, 438–440 (1996)

    Article  ADS  CAS  Google Scholar 

Download references


We thank H. Erickson for FNIII7-10 monomer and trimer constructs; A. J. Woods for the talin1-ABS construct; R. Hynes for β3 cell lines; J. Sap for RPTPα cell lines; G. von Wichert and N. Heckenberg for discussions; and all the Sheetz laboratory members for consistent help. This work was supported by a grant from the NIH to M.P.S. Work in D.R.C.'s laboratory was funded by the Wellcome Trust.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Michael P. Sheetz.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jiang, G., Giannone, G., Critchley, D. et al. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424, 334–337 (2003).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing