Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres

Abstract

Photonic crystal fibres (PCFs) offer greatly enhanced design freedom compared to standard optical fibres. For example, they allow precise control of the chromatic dispersion (CD) profile—the frequency dependence of propagation speed—over a broad wavelength range. This permits studies of nonlinear pulse propagation in previously inaccessible parameter regimes. Here we report on spectral broadening of 100-fs pulses in PCFs with anomalously flat CD profiles. Maps of the spectral and spatio-temporal behaviour as a function of power show that dramatic conversion (to both longer and shorter wavelengths) can occur in remarkably short lengths of fibre, depending on the magnitude and shape of the CD profile. Because the PCFs used are single-mode at all wavelengths, the light always emerges in a fundamental guided mode. Excellent agreement is obtained between the experimental results and numerical solutions of the nonlinear wave equation, indicating that the underlying processes can be reliably modelled. These results show how, through appropriate choice of CD, nonlinearities can be efficiently harnessed to generate laser light at new wavelengths.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Dispersion profiles for three PCFs (A–C) and a Corning SMF28 fibre (D).
Figure 2: Experimental (left) and theoretical (right) output intensity spectra for the PCFs in Fig. 1, as a function of the average power.
Figure 3: Modulational instability gain in systems with different D(λ) (the grey to white regions represent medium to high gain on a linear scale; gain is zero in the black regions).
Figure 4: The pulse evolution, plotted against propagation distance, for fibre A in Fig. 1: a, Pulse delay (relative to a time frame moving at the pulse's average group velocity); b, spectrum.
Figure 5: The pulse evolution, plotted against propagation distance, for fibre B in Fig. 1.

References

  1. Russell, J. S. Report on waves. in Report of the 14th Meeting of the British Association for the Advancement of Science 311–390, Plates XLII–LVII (London, 1845)

    Google Scholar 

  2. Zakharov, V. E. & Shabat, A. B. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of nonlinear waves in nonlinear media. Sov. Phys. JETP 34, 62–69 (1971)

    ADS  MathSciNet  Google Scholar 

  3. Hasegawa, A. & Tappert, F. D. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibres. Appl. Phys. Lett. 23, 142–144 (1973)

    ADS  CAS  Article  Google Scholar 

  4. Mollenauer, L. F., Stolen, R. H. & Gordon, J. P. Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095–1098 (1980)

    ADS  Article  Google Scholar 

  5. Smith, N. J., Knox, F. M., Doran, N. J., Blow, K. J. & Bennion, I. Enhanced power solitons in optical fibres with periodic dispersion management. Electron. Lett. 32, 54–55 (1996)

    Article  Google Scholar 

  6. Omenetto, F. G., Moores, M. D., Reitze, D. H. & Taylor, A. J. Adaptive control of nonlinear femtosecond pulse propagation in optical fibers. Opt. Lett. 26, 938–940 (2001)

    ADS  CAS  Article  Google Scholar 

  7. Agrawal, G. P. Nonlinear Fiber Optics (Academic, San Diego, 2001)

    MATH  Google Scholar 

  8. Ortigosa-Blanch, A., Knight, J. C. & Russell, P. St. J. Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers. J. Opt. Soc. Am. A 19, 2567–2572 (2002)

    ADS  CAS  Article  Google Scholar 

  9. Herrmann, J. et al. Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers. Phys. Rev. Lett. 88, 173901 (2002)

    ADS  CAS  Article  Google Scholar 

  10. Coen, S. et al. Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers. J. Opt. Soc. Am. B 19, 753–764 (2002)

    ADS  CAS  Article  Google Scholar 

  11. Gaeta, A. L. Nonlinear propagation and continuum generation in microstructured optical fibers. Opt. Lett. 27, 924–926 (2002)

    ADS  Article  Google Scholar 

  12. Knight, J. C., Birks, T. A., Russell, P. St. J. & Atkin, D. M. All-silica single-mode fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996); erratum Opt. Lett. 22, 484–485 (1997)

    ADS  CAS  Article  Google Scholar 

  13. Russell, P. St. J. Photonic crystal fibers. Science 299, 358–362 (2003)

    ADS  CAS  Article  Google Scholar 

  14. Jones, D. A. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000)

    ADS  CAS  Article  Google Scholar 

  15. Holzwarth, R. et al. An optical frequency synthesiser for precision spectroscopy. Phys. Rev. Lett. 85, 2264–2267 (2000)

    ADS  CAS  Article  Google Scholar 

  16. Hartl, X. D. et al. Ultrahigh resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. Opt. Lett. 26, 608–610 (2001)

    ADS  CAS  Article  Google Scholar 

  17. Wadsworth, W. J. et al. Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source. J. Opt. Soc. Am. B 9, 2148–2155 (2002)

    ADS  Article  Google Scholar 

  18. Reeves, W. H., Knight, J. C., Russell, P. St. J. & Roberts, P. J. Demonstration of ultra-flattened dispersion in photonic crystal fibers. Opt. Expr. 10, 609–613 (2002)

    ADS  Article  Google Scholar 

  19. Lundin, R. Dispersion flattening in a W-fibre. Appl. Opt. 6, 1011–1014 (1994)

    ADS  Article  Google Scholar 

  20. Lee, J., Song, G. H., Paek, U.-C. & Seo, Y. G. Design and fabrication of a nonzero-dispersion fibre with a maximally flat dispersion spectrum. IEEE Phot. Tech. Lett. 4, 317–319 (2001)

    ADS  Google Scholar 

  21. Hansryd, J. & Andrekson, P. A. Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49 dB gain and wavelength-conversion efficiency. IEEE Phot. Tech. Lett. 13, 194–196 (2001)

    ADS  Article  Google Scholar 

  22. Takushima, Y. & Kikuchi, K. 10-GHz, over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber. IEEE Phot. Tech. Lett. 11, 322–324 (1999)

    ADS  Article  Google Scholar 

  23. Tateda, M., Shibata, N. & Seikai, S. Interferometric method for chromatic dispersion measurement in a single-mode optical fiber. IEEE J. Quant. Electron. 17, 404–407 (1981)

    ADS  Article  Google Scholar 

  24. Dudley, J. M. et al. Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping. J. Opt. Soc. Am. B19, 765–771 (2002)

    ADS  Article  Google Scholar 

  25. Akhmediev, N. & Karlsson, M. Čerenkov radiation emitted by solitons in optical fibers. Phys. Rev. A 51, 2602–2607 (1995)

    ADS  CAS  Article  Google Scholar 

  26. Weiner, A. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000)

    ADS  CAS  Article  Google Scholar 

  27. Ravi Kanth Kumar, V. V. et al. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Opt. Expr. 10, 1520–1525 (2002)

    ADS  Article  Google Scholar 

  28. Parker, A. R. 515 million years of structural colour. J. Opt. A: Pure Appl. Opt. 2, R15–R28 (2000)

    ADS  Article  Google Scholar 

  29. Benabid, F., Knight, J. C., Antonopoulos, G. & Russell, P. St. J. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 298, 399–402 (2002)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank B. J. Mangan of BlazePhotonics Ltd for technical assistance in fabricating the fibres.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. C. Knight or F. G. Omenetto.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Reeves, W., Skryabin, D., Biancalana, F. et al. Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres. Nature 424, 511–515 (2003). https://doi.org/10.1038/nature01798

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01798

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing