Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean

Abstract

A high-resolution mapping and sampling study of the Gakkel ridge was accomplished during an international ice-breaker expedition to the high Arctic and North Pole in summer 2001. For this slowest-spreading endmember of the global mid-ocean-ridge system, predictions were that magmatism should progressively diminish as the spreading rate decreases along the ridge, and that hydrothermal activity should be rare. Instead, it was found that magmatic variations are irregular, and that hydrothermal activity is abundant. A 300-kilometre-long central amagmatic zone, where mantle peridotites are emplaced directly in the ridge axis, lies between abundant, continuous volcanism in the west, and large, widely spaced volcanic centres in the east. These observations demonstrate that the extent of mantle melting is not a simple function of spreading rate: mantle temperatures at depth or mantle chemistry (or both) must vary significantly along-axis. Highly punctuated volcanism in the absence of ridge offsets suggests that first-order ridge segmentation is controlled by mantle processes of melting and melt segregation. The strong focusing of magmatic activity coupled with faulting may account for the unexpectedly high levels of hydrothermal activity observed.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Bathymetric map of the Arctic Ocean.
Figure 2: Bathymetric map of Gakkel ridge showing lithology of recovered rocks.
Figure 3: Variation in axial depth, lithology and basalt geochemistry along the axis of Gakkel ridge.
Figure 4: Correlation of spreading rate and incidence of hydrothermal plumes.

References

  1. DeMets, C., Gordon, R. G., Argus, D. F. & Stein, S. Current plate motions. Geophys. Res. Lett. 21, 2191–2194 (1994)

    ADS  Article  Google Scholar 

  2. Vogt, P. R., Taylor, P. T., Kovacs, L. C. & Johnson, G. L. Detailed aeromagnetic investigations of the Arctic Basin. J. Geophys. Res. 84, 1071–1089 (1979)

    ADS  Article  Google Scholar 

  3. Kovacks, L. C., et al. Residual Magnetic Anomaly Chart of the Arctic Ocean Region. Scale 1:6,000,000 Map and Chart Series MC53 (Geological Society of America, Boulder, 1985)

    Google Scholar 

  4. Dick, H. J. B. in Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.) Special Publication 42 71–105 (Geological Society of London, London, 1989)

    Google Scholar 

  5. Reid, I. & Jackson, H. R. Oceanic spreading rate and crustal thickness. Mar. Geophys. Res. 5, 165–172 (1981)

    Google Scholar 

  6. Bown, J. W. & White, R. S. Variation with spreading rate of oceanic crustal thickness and geochemistry. Earth Planet. Sci. Lett. 121, 435–449 (1994)

    ADS  CAS  Article  Google Scholar 

  7. Michael, P. J. & Cornell, W. C. Influence of spreading rate and magma supply on crystallization and assimilation beneath mid-ocean ridges: Evidence from chlorine and major element chemistry of mid ocean ridge basalts. J. Geophys. Res. 103, 18325–18356 (1998)

    ADS  CAS  Article  Google Scholar 

  8. Prinzhofer, A., Lewin, E. & Allegre, C. J. Stochastic melting of the marble cake mantle: evidence from a local study off the East Pacific Rise at 12°50′ N. Earth Planet. Sci. Lett. 92, 189–206 (1989)

    ADS  CAS  Article  Google Scholar 

  9. Batiza, R. Inverse relationship between Sr isotope diversity and rate of oceanic volcanism has implications for mantle heterogeneity. Nature 309, 440–441 (1984)

    ADS  CAS  Article  Google Scholar 

  10. Holness, M. B. & Richter, F. M. Possible effects of spreading rate on MORB isotopic and rare earth composition arising from melting of a heterogeneous source. J. Geol. 97, 247–260 (1989)

    ADS  CAS  Article  Google Scholar 

  11. Langmuir, C. H., Klein, E. M. & Plank, T. in Mantle Flow and Melt Generation at Mid-ocean Ridges AGU Monograph 71 (eds Phipps Morgan, J., Blackman, D. K. & Sinton, J. M.) 183–280 (American Geophysical Union, Washington DC, 1992)

    Google Scholar 

  12. Hirschmann, M. M. & Stolper, E. M. A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib. Mineral. Petrol. 124, 185–208 (1996)

    ADS  CAS  Article  Google Scholar 

  13. Baker, E. T., Chen, Y. J. & Phipps Morgan, J. The relationship between near-axis hydrothermal cooling and the spreading rate of mid-ocean ridges. Earth Planet. Sci. Lett. 142, 137–145 (1996)

    ADS  CAS  Article  Google Scholar 

  14. Jokat, W. et al. Geophysical evidence for reduced melt production on the Arctic ultraslow Gakkel mid-ocean ridge. Nature 423, 962–965 (2003)

    ADS  CAS  Article  Google Scholar 

  15. Drachev, S. The Laptev Sea rifted continental margin: Modern knowledge and unsolved questions. Int. Conf. Arctic Margins (ICAM III) (eds Vogt, P. R., Kovacs, L. C., Johnson, G. L. & Feden, R. H.) Abstr. 48–49 (Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, 1998).

  16. Karasik, A. M. The Eurasia Basin of the Arctic Ocean from the point of view of plate tectonics. Nauchno-Issledovateliskiy Institut Geologii Avktiki, 23–31 (1974)

    Google Scholar 

  17. Coakley, B. J. & Cochran, J. R. Gravity evidence of very thin crust at the Gakkel Ridge (Arctic Ocean). Earth Planet. Sci. Lett. 162, 81–95 (1998)

    ADS  CAS  Article  Google Scholar 

  18. Cochran, J. R., Kurras, G. J., Edwards, M. H. & Coakley, B. J. The Gakkel Ridge: Bathymetry, gravity anomalies and crustal accretion at extremely slow spreading rates. J. Geophys. Res. 108 (2003) doi:10/1029/2002JB001830

  19. Vogt, P. R., Kovacs, L. C., Johnson, G. L. & Feden, R. H. The Evolution of the Arctic Ocean with emphasis on the Eurasia Basin, paper NSS/3. in Norwegian Sea Symposium, 1–29 (Norwegian Petroleum Society, Tromsoe, 1979)

    Google Scholar 

  20. Muller, C. & Jokat, W. Seismic evidence for volcanic activity discovered in central Arctic. Eos 81, 265 (2000)

    ADS  Article  Google Scholar 

  21. Edwards, M. et al. Evidence or recent volcanic activity on the ultraslow-spreading Gakkel ridge. Nature 409, 808–812 (2001)

    ADS  CAS  Article  Google Scholar 

  22. Tolstoy, M., Bohnenstiehl, D. R., Edwards, M. & Kurras, G. Seismic character of volcanic activity at the ultraslow-spreading Gakkel Ridge. Geology 29, 1139–1142 (2001)

    ADS  Article  Google Scholar 

  23. Mühe, R. K., Devey, C. W. & Bohrmann, H. Isotope and trace element geochemistry of MORB from the Nansen-Gakkel ridge at 86°N. Earth Planet. Sci. Lett. 120, 103–109 (1993)

    ADS  Article  Google Scholar 

  24. Mühe, R. K., Bohrmann, H., Hörmann, P. K., Thiede, J. & Stoffers, P. Spinifex basalts with komatiite-tholeiite trend. Tectonophysics 190, 95–108 (1991)

    ADS  Article  Google Scholar 

  25. Mühe, R. K., Bohrmann, H., Garbe-Schönberg, D. & Kassens, H. E-MORB glasses from the Gakkel Ridge (Arctic Ocean) at 87°N: evidence for the Earth's most northerly volcanic activity. Earth Planet. Sci. Lett. 152, 1–9 (1997)

    ADS  Article  Google Scholar 

  26. Hellebrand, E., Snow, J. E. & Mühe, R. Mantle melting beneath Gakkel Ridge (Arctic Ocean): Abyssal peridotite spinel compositions. Chem. Geol. 182, 227–235 (2002)

    ADS  CAS  Article  Google Scholar 

  27. Kong, L. S. L., Detrick, R. S., Fox, P. J., Mayer, L. A. & Ryan, W. B. F. The morphology and tectonics of the MARK area from Sea Beam and SeaMARC I observations (Mid-Atlantic Ridge 23°N). Mar. Geophys. Res. 10, 59–90 (1988)

    Article  Google Scholar 

  28. Ballard, R. D. & van Andel, T. H. Morphology and tectonics of the inner rift valley at lat 36°50′ N on the Mid-Atlantic Ridge. Geol. Soc. Am. Bull. 88, 507–530 (1977)

    ADS  Article  Google Scholar 

  29. Dick, H. J. B., Fisher, R. L. & Bryan, W. B. Mineralogic variability of the uppermost mantle along mid-ocean ridges. Earth Planet. Sci. Lett. 69, 88–106 (1984)

    ADS  CAS  Article  Google Scholar 

  30. Michael, P. J. & Bonatti, E. Peridotite composition from the North Atlantic: Regional and tectonic variations and implications for partial melting. Earth Planet. Sci. Lett. 73, 91–104 (1985)

    ADS  CAS  Article  Google Scholar 

  31. Langmuir, C. H., Bender, J. F. & Batiza, R. Petrological and tectonic segmentation of the East Pacific Rise, 5°30′ –14°30′ N. Nature 322, 422–429 (1986)

    ADS  CAS  Article  Google Scholar 

  32. Lehnert, K., Su, Y., Langmuir, C. H., Sarbas, B. & Nohl, U. A global geochemical database structure for rocks. Geochem. Geophys. Geosyst. 1, 1999FC000026 (2000)

    Article  Google Scholar 

  33. Klein, E. M. & Langmuir, C. H. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J. Geophys. Res. 92, 8089–8115 (1987)

    ADS  CAS  Article  Google Scholar 

  34. Phipps Morgan, J. & Chen, Y. J. The genesis of oceanic crust: Magma injection, hydrothermal circulation and crustal flow. J. Geophys. Res. 98, 6283–6297 (1993)

    ADS  Article  Google Scholar 

  35. Mevel, C. et al. Sampling of the Southwest Indian Ridge: First results of the EDUL cruise (Marion Dufresne II, August, 1997). InterRidge News 6(2), 25–26 (1997)

    Google Scholar 

  36. Feden, R. H., Vogt, P. R. & Fleming, H. S. Magnetic and bathymetric evidence for the “Yermak” hotspot northwest of Svalbard in the Arctic Basin. Earth Planet. Sci. Lett. 44, 18–38 (1979)

    ADS  Article  Google Scholar 

  37. Ritzmann, O. & Jokat, W. Crustal structure of northwestern Svalbard and the adjacent Yermak Plateau: Evidence for Oligocene detachment tectonics and non-volcanic breakup. Geophys. J. Int. 151, 1–21 (2002)

    Article  Google Scholar 

  38. Dick, H. J., Schouten, H. & Lin, J. Crustal (?) accretion during extreme oblique spreading at an ultra-slow mid-ocean ridge. Eos 82, S407 (2001)

    Google Scholar 

  39. Brandon, A. D., Snow, J. E., Walker, R. J., Morgan, J. W. & Mock, T. D. 190Pt-186Os and 187Re-187Os systematics of abyssal peridotites. Earth Planet. Sci. Lett. 177, 319–335 (2000)

    ADS  CAS  Article  Google Scholar 

  40. Hanson, G. N. Evolution of the suboceanic mantle. Geol. Soc. Lond. 134, 235–253 (1977)

    CAS  Article  Google Scholar 

  41. Fox, P. J. & Gallo, D. G. A tectonic model for ridge-transform ridge plate boundaries: Implications for the structural evolution of oceanic lithosphere. Tectonophysics 104, 205–242 (1984)

    ADS  Article  Google Scholar 

  42. Whitehead, J. A., Dick, H. J. B. & Schouten, H. A mechanism for magmatic accretion under spreading centres. Nature 312, 146–148 (1984)

    ADS  CAS  Article  Google Scholar 

  43. Bonatti, E. Punctiform initiation of seafloor spreading in the Red Sea during transition from a continental to an oceanic rift. Nature 316, 33–37 (1985)

    ADS  Article  Google Scholar 

  44. Lin, J. & Phipps Morgan, J. The spreading rate dependence of three-dimensional mid-ocean ridge gravity structure. Geophys. Res. Lett. 19, 13–16 (1992)

    ADS  Article  Google Scholar 

  45. Edmonds, H. N. et al. Discovery of abundant hydrothermal venting on the ultra slow-spreading Gakkel Ridge in the Arctic Ocean. Nature 421, 252–256 (2003)

    ADS  CAS  Article  Google Scholar 

  46. Bach, W., Banerjee, N. R., Dick, H. J. B. & Baker, E. T. Discovery of ancient hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10°–16°E. Geochem. Geophys. Geosyst. 3, 2001GC000279 (2002)

    Article  Google Scholar 

  47. German, C. R. & Parson, L. M. Distributions of hydrothermal activity along the Mid-Atlantic Ridge: Interplay of magmatic and tectonic control. Earth Planet. Sci. Lett. 160, 327–341 (1998)

    ADS  CAS  Article  Google Scholar 

  48. Baker, E. T., Cormier, M.-H., Langmuir, C. H. & Zavala, K. Hydrothermal plumes along segments of contrasting magmatic influence, 15°20′ –18°30′ N, East Pacific Rise: Influence of axial faulting. Geochem. Geophys. Geosyst. 2, 2000GC000165 (2001)

    Article  Google Scholar 

  49. Jakobsson, M., Cherkis, N. Z., Woodward, J., Macnab, R. & Coakley, B. New grid of Arctic bathymetry aids scientists and mapmakers. Eos 81, 89 (2000) 93, 96

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank all of the members of the USCGC Healy and PFS Polarstern scientific parties for their efforts, and the officers and crews of these ships for their technical and logistical support. We thank E. Klein for an insightful review. This work was supported by the US National Science Foundation, the Deutsche Forschungsgemeinschaft and the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Michael.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Michael, P., Langmuir, C., Dick, H. et al. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature 423, 956–961 (2003). https://doi.org/10.1038/nature01704

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01704

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing