Opposing basal ganglia processes shape midbrain visuomotor activity bilaterally


The manner in which the nervous system allocates limited motor resources when confronted with conflicting behavioural demands is a crucial issue in understanding how sensory information is transformed into adaptive motor responses. Understanding this selection process is of particular concern in current models of functions of the basal ganglia1. Here we report that the basal ganglia use simultaneous enhancing and suppressing processes synergistically to modulate sensory activity in the superior colliculi, which are bilaterally paired midbrain structures involved in the control of visual orientation behaviours2. These complementary processes presumably ensure accurate gaze shifts mediated by the superior colliculi despite the presence of potential distractors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Uncrossed nigrocollicular neurons are inhibited by visual stimuli.
Figure 2: Crossed nigrocollicular neurons are excited by visual stimuli.
Figure 3: Crossed nigrocollicular neurons are, like their uncrossed counterparts, GABA-mediated and terminate on presumptive output neurons.
Figure 4: Electrical activation of crossed nigrocollicular neurons inhibits target neurons in contralateral SC.


  1. 1

    Redgrave, P., Prescott, T. J. & Gurney, K. The basal ganglia: a vertebrate solution to the selection problem. Neuroscience 89, 1009–1023 (1999)

    CAS  Article  Google Scholar 

  2. 2

    Stein, B. E. & Meredith, M. A. The Merging of the Senses (MIT Press, Cambridge, Massachusetts, 1993)

    Google Scholar 

  3. 3

    Lee, C., Rohrer, W. H. & Sparks, D. L. Population coding of saccadic eye movements by neurons in the superior colliculus. Nature 332, 357–360 (1988)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Munoz, D. P. & Guitton, D. Tectospinal neurons in the cat have discharges coding gaze position error. Brain Res. 341, 184–188 (1985)

    CAS  Article  Google Scholar 

  5. 5

    Chevalier, G., Vacher, S. & Deniau, J. M. Inhibitory nigral influence on tectospinal neurons, a possible implication of basal ganglia in orienting behaviour. Exp. Brain Res. 53, 320–326 (1984)

    CAS  Article  Google Scholar 

  6. 6

    Chevalier, G., Vacher, S., Deniau, J. M. & Desban, M. Disinhibition as a basic process in the expression of striatal function. I. The striato-nigral influence on tecto-spinal/tecto-diencephalic neurons. Brain Res. 334, 215–226 (1985)

    CAS  Article  Google Scholar 

  7. 7

    Hikosaka, O. & Wurtz, R. H. Visual and oculomotor function of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. J. Neurophysiol. 49, 1285–1301 (1983)

    CAS  Article  Google Scholar 

  8. 8

    Joseph, J. P. & Boussaoud, D. Role of the cat substantia nigra pars reticulata in eye and head movements. 1. Neural activity. Exp. Brain Res. 57, 286–296 (1985)

    CAS  Article  Google Scholar 

  9. 9

    Beckstead, R. M. A comparison of the intranigral disribution of nigrotectal neurons labelled with horseradish peroxidase in the monkey, cat and rat. J. Neurosci. 1, 121–125 (1981)

    CAS  Article  Google Scholar 

  10. 10

    Harting, J. K., Huerta, M. F., Hashikawa, R., Weber, J. T. & Van Lieshout, D. P. Neuroanatomical studies of the nigrotectal projection in the cat. J. Comp. Neurol. 278, 615–631 (1988)

    CAS  Article  Google Scholar 

  11. 11

    Chevalier, G., Thierry, A. M., Shibazaki, T. & Feger, J. Evidence for a GABAergic inhibitory nigrotectal pathway in the rat. Neurosci. Lett. 21, 67–70 (1981)

    CAS  Article  Google Scholar 

  12. 12

    Karabelas, A. B. & Moschovakis, A. K. Nigral inhibitory termination of efferent neurons of the superior colliculus: an intracellar horseradish peroxidase study in the cat. J. Comp. Neurol. 239, 309–329 (1985)

    CAS  Article  Google Scholar 

  13. 13

    May, P. J. & Hall, W. C. Relationships between the nigrotectal pathway and the cells of origin of the predorsal bundle. J. Comp. Neurol. 226, 357–376 (1984)

    CAS  Article  Google Scholar 

  14. 14

    Chevalier, G. & Deniau, J. M. Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci. 13, 277–280 (1990)

    CAS  Article  Google Scholar 

  15. 15

    Wallace, S. F., Rosenquist, A. C. & Sprague, J. M. Ibotenic acid lesions of the lateral substantia nigra restore visual orientation behaviour in the hemianopic cat. J. Comp. Neurol. 296, 222–252 (1990)

    CAS  Article  Google Scholar 

  16. 16

    Ryan, L. J. & Clark, K. B. The role of the subthalamic nucleus in the response of globus pallidus neurons to stimulation of the prelimbic and agranular frontal cortices in rats. Exp. Brain Res. 86, 641–651 (1991)

    CAS  Article  Google Scholar 

  17. 17

    Kha, H. T. et al. Projections from the substantia nigra pars reticulata to the motor thalamus of the rat: single axon reconstructions and immunohistochemical study. J. Comp. Neurol. 440, 20–30 (2001)

    CAS  Article  Google Scholar 

  18. 18

    Mize, R. R., Luo, Q., Butler, G., Jeon, C. J. & Nabors, B. The calcium-binding proteins parvalbumin and calbindin-D 28K form complementary patterns in the cat superior colliculus. J. Comp. Neurol. 320, 243–256 (1992)

    CAS  Article  Google Scholar 

  19. 19

    Kalesnykas, R. P. & Sparks, D. L. The interaction of visual and electrical activity of neurons in the monkey superior colliculus: Site and train characteristics affect saccade latency, amplitude and direction. Soc. Neurosci. Abstr. 25, 1920 (1999)

    Google Scholar 

  20. 20

    Wang, S. & Redgrave, P. Microinjections of muscimol into lateral superior colliculus disrupt orienting and oral movements in the formalin model of pain. Neuroscience 81, 967–988 (1997)

    CAS  Article  Google Scholar 

  21. 21

    Infante, C. & Leiva, J. Simultaneous unitary neuronal activity in both superior colliculi and its relation to eye movements in the cat. Brain Res. 381, 390–392 (1986)

    CAS  Article  Google Scholar 

  22. 22

    Behan, M. An EM-autoradiographic and EM-HRP study of the commissural projection of the superior colliculus in the cat. J. Comp. Neurol. 234, 105–116 (1985)

    CAS  Article  Google Scholar 

  23. 23

    Mink, J. W. The basal ganglia: focused selection and inhibition of competing motor programs. Prog. Neurobiol. 50, 381–425 (1996)

    CAS  Article  Google Scholar 

  24. 24

    Handel, A. & Glimcher, P. W. Contextual modulation of substantia nigra pars reticulata neurons. J. Neurophysiol. 83, 3042–3048 (2000)

    CAS  Article  Google Scholar 

  25. 25

    Sato, M. & Hikosaka, O. Role of primate substantia nigra pars reticulata in reward-oriented saccadic eye movement. J. Neurosci. 22, 2363–2373 (2002)

    CAS  Article  Google Scholar 

  26. 26

    Alexander, G. E. & Crutcher, M. D. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 13, 266–271 (1990)

    CAS  Article  Google Scholar 

  27. 27

    Kita, H. & Kitai, S. T. Efferent projections of the subthalamic nucleus in the rat: light and electron microscopic analysis with the PHA-L method. J. Comp. Neurol. 260, 435–452 (1987)

    CAS  Article  Google Scholar 

  28. 28

    Sprague, J. M. Interactions of cortex and superior colliculus in mediation of visually guided behavior in the cat. Science 153, 1544–1547 (1966)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Wallace, S. F., Rosenquist, A. C. & Sprague, J. M. Recovery from cortical blindness mediated by destruction of nontectotectal fibres in the commissure of the superior colliculus in the cat. J. Comp. Neurol. 284, 429–450 (1989)

    CAS  Article  Google Scholar 

  30. 30

    Karnath, H. O. New insights into the functions of the superior temporal cortex. Nature Rev. Neurosci. 2, 568–576 (2001)

    CAS  Article  Google Scholar 

Download references


We thank R. Coghill, P. Redgrave and T. Stanford for their critical comments on earlier versions of the manuscript, and N. London for editorial assistance. This work was supported by a grant from the National Institutes of Health to J.G.M. H.J. was partly supported by a grant from the National Institutes of Health to B.E.S.

Author information



Corresponding author

Correspondence to John G. McHaffie.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jiang, H., Stein, B. & McHaffie, J. Opposing basal ganglia processes shape midbrain visuomotor activity bilaterally. Nature 423, 982–986 (2003). https://doi.org/10.1038/nature01698

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing