Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

146Sm–142Nd evidence from Isua metamorphosed sediments for early differentiation of the Earth's mantle

A Corrigendum to this article was published on 21 August 2003

Abstract

Application of the 147Sm–143Nd chronometer (half-life of 106?Gyr) suggests that large-scale differentiation of the Earth's mantle may have occurred during the first few hundred million years of its history1. However, the signature of mantle depletion found in early Archaean rocks is often obscured by uncertainties resulting from open-system behaviour of the rocks during later high-grade metamorphic events2. Hence, although strong hints exist regarding the presence of differentiated silicate reservoirs before 4.0?Gyr ago, both the nature and age of early mantle differentiation processes remain largely speculative3,4,5. Here we apply short-lived 146Sm–142Nd chronometry (half-life of 103?Myr) to early Archaean rocks using ultraprecise measurement of Nd isotope ratios. The analysed samples are well-preserved metamorphosed sedimentary rocks from the 3.7–3.8-Gyr Isua greenstone belt of West Greenland. Our coupled isotopic calculations, combined with an initial ɛ143Nd value from ref. 6, constrain the mean age of mantle differentiation to 4,460 ± 115?Myr. This early Sm/Nd fractionation probably reflects differentiation of the Earth's mantle during the final stage of terrestrial accretion.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: ɛ142Nd values of IGB metasediments compared with those of the Nd standard AMES (N = 33) and several replicates of a modern mid-ocean ridge basalt.
Figure 2: Snapshot of 142,143Nd isotopic evolution of differentiated mantle at 3,744?Myr ago.
Figure 3: Isotopic evolution curves of depleted mantle following instantaneous differentiation of the mantle–crust system.

References

  1. Smith, A. D. & Ludden, J. N. Nd isotopic evolution of the Precambrian mantle. Earth Planet. Sci. Lett. 93, 14–22 (1989)

    ADS  CAS  Article  Google Scholar 

  2. Moorbath, S., Whitehouse, M. J. & Kamber, B. S. Extreme Nd-isotope heterogeneity in the early Archaean—fact or fiction? Case histories from northern Canada and West Greenland. Chem. Geol. 135, 213–231 (1997)

    ADS  CAS  Article  Google Scholar 

  3. Armstrong, R. L. Radiogenic isotopes: The case for crustal recycling on a near-steady-state no-continent-growth Earth. Phil. Trans. R. Soc. Lond. A 301, 443–472 (1981)

    ADS  CAS  Article  Google Scholar 

  4. Chase, C. G. & Patchett, P. J. Stored mafic/ultramafic crust and early Archean mantle depletion. Earth Planet. Sci. Lett. 91, 66–72 (1988)

    ADS  CAS  Article  Google Scholar 

  5. Galer, S. J. G. & Goldstein, S. L. Early mantle differentiation and its thermal consequences. Geochim. Cosmochim. Acta 55, 227–239 (1991)

    ADS  CAS  Article  Google Scholar 

  6. Kamber, B. S., Moorbath, S. & Whitehouse, M. J. Extreme Nd isotope heterogeneity in the early Archean—fact of fiction? Case histories from northern Canada and West Greenland—Reply. Chem. Geol. 148, 219–224 (1998)

    ADS  CAS  Article  Google Scholar 

  7. Allègre, C. J., Staudacher, T. & Sarda, P. Rare gas systematics: Formation of the atmosphere, evolution and structure of the Earth's mantle. Earth Planet. Sci. Lett. 81, 127–150 (1986)

    ADS  Article  Google Scholar 

  8. Yin, Q. et al. A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites. Nature 418, 949–952 (2002)

    ADS  CAS  Article  Google Scholar 

  9. Kleine, T., Münker, C., Mezger, K. & Palme, H. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry. Nature 418, 952–955 (2002)

    ADS  CAS  Article  Google Scholar 

  10. Schoenberg, R., Kamber, B. S., Collerson, K. D. & Eugster, O. New W-isotope evidence for rapid terrestrial accretion and early core formation. Geochim. Cosmochim. Acta 66, 3151–3160 (2002)

    ADS  CAS  Article  Google Scholar 

  11. Lugmair, G. W., Shimamura, T., Lewis, R. S. & Anders, E. Samarium-146 in the early Solar System: Evidence from neodymium in the Allende meteorite. Science 222, 1015–1018 (1983)

    ADS  CAS  Article  Google Scholar 

  12. Prinzhofer, D. A., Papanastassiou, D. A. & Wasserburg, G. J. Samarium-neodymium evolution of meteorites. Geochim. Cosmochim. Acta 56, 797–815 (1992)

    ADS  CAS  Article  Google Scholar 

  13. Sharma, M., Papanastassiou, D. A., Wasserburg, G. J. & Dymek, R. F. The issue of the terrestrial record of 146Sm. Geochim. Cosmochim. Acta 60, 2037–2047 (1996)

    ADS  CAS  Article  Google Scholar 

  14. Harper, C. L. & Jacobsen, S. B. Evidence from coupled 147Sm–143Nd and 146Sm–142Nd systematics for very early (4.5?Gyr) differentiation of the Earth's mantle. Nature 360, 728–732 (1992)

    ADS  CAS  Article  Google Scholar 

  15. Goldstein, S. L. & Galer, S. J. G. On the trail of early mantle differentiation: 142Nd/144Nd ratios of early Archean rocks. Eos 73, 323 (1992)

    Article  Google Scholar 

  16. McCulloch, M. T. & Bennett, V. C. Evolution of the early Earth: Constraints from 143Nd-142Nd isotopic systematics. Lithos 30, 234–255 (1993)

    ADS  Article  Google Scholar 

  17. Regelous, M. & Collerson, K. D. 147Sm-143Nd, 146Sm-142Nd systematics of early Archaean rocks and implications for crust-mantle evolution. Geochim. Cosmochim. Acta 60, 3513–3520 (1996)

    ADS  CAS  Article  Google Scholar 

  18. Caro, G., Bourdon, B., Birck, J. L. & Moorbath, S. 142Nd/144Nd precise determination in early Archean rocks. [Abstract]. Geochim. Cosmochim. Acta 66, A121 (2002)

    Google Scholar 

  19. Boyet, M., Albarède, F., Télouk, P. & Rosing, M. 142Nd anomaly confirmed at Isua. [Abstract]. Geochim. Cosmochim. Acta 66, A99 (2002)

    Google Scholar 

  20. Boak, J. L. & Dymek, R. F. Metamorphism of the ca. 3800?Ma supracrustal rocks at Isua, West Greenland: Implications for early Archaean crustal evolution. Earth Planet. Sci. Lett. 59, 155–176 (1982)

    ADS  CAS  Article  Google Scholar 

  21. Nutman, A. P., Bennett, V. C., Friend, C. R. L. & Rosing, M. T. 3710 and >3790?Ma volcanic sequences in the Isua (Greenland) greenstone belt; structural and Nd isotope implications. Chem. Geol. 141, 271–287 (1997)

    ADS  CAS  Article  Google Scholar 

  22. Schoenberg, R., Kamber, B. S., Collerson, K. D. & Moorbath, S. Tungsten isotope evidence from 3.8-Gyr metamorphosed sediments for early meteorite bombardment of the Earth. Nature 418, 403–405 (2002)

    ADS  CAS  Article  Google Scholar 

  23. Goldstein, S. J. & Jacobsen, S. B. Nd and Sr isotopic systematics of river water suspended material: Implications for crustal evolution. Earth Planet. Sci. Lett. 87, 249–265 (1988)

    ADS  CAS  Article  Google Scholar 

  24. Hofmann, A. W. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 90, 297–314 (1988)

    ADS  CAS  Article  Google Scholar 

  25. Chambers, J. E. Making more terrestrial planets. Icarus 152, 205–224 (2001)

    ADS  Article  Google Scholar 

  26. Harper, C. L., Nyquist, L. E., Bansal, B., Wiesmann, H. & Shih, C. Rapid accretion and early differentiation of Mars indicated by 142Nd/144Nd in SNC meteorites. Science 267, 213–217 (1995)

    ADS  CAS  Article  Google Scholar 

  27. Borg, L. E., Nyquist, L. E., Taylor, L. A., Wiesmann, H. & Shih, C. Constraints on Martian differentiation processes from Rb-Sr and Sm-Nd isotopic analyses of the basaltic shergottite QUE 94201. Geochim. Cosmochim. Acta 61, 4915–4931 (1997)

    ADS  CAS  Article  Google Scholar 

  28. Tonks, B. T. & Melosh, H. J. Magma ocean formation due to giant impacts. J. Geophys. Res. 98, 5319–5333 (1993)

    ADS  Article  Google Scholar 

  29. Choblet, G. & Sotin, C. 3D thermal convection with variable viscosity: Can transient cooling be described by a quasi-static scaling law? Phys. Earth Planet. Inter. 119, 321–336 (2000)

    ADS  Article  Google Scholar 

  30. Vance, D. & Thirlwall, M. An assessment of mass discrimination in MC-ICPMS using Nd isotopes. Chem. Geol. 185, 227–240 (2002)

    ADS  CAS  Article  Google Scholar 

  31. Rehkämper, M., Gärtner, M., Galer, S. J. G. & Goldstein, S. L. Separation of Ce from other rare-earth elements with application to Sm-Nd and La-Ce chronometry. Chem. Geol. 129, 201–208 (1996)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank C. Allègre, C. Jaupart and C. Langmuir for discussions, K. Burton for input at the earlier stage of this work, M. Delmotte for maintaining the TRITON in good condition, and M. Pierre for help with analytical chemistry. S.M. thanks P. Appel and the Isua Multidisciplinary Research Project for logistic and financial support of field work. This work was supported by the CNRS research programme ‘Intérieur de la Terre’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Caro.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Caro, G., Bourdon, B., Birck, JL. et al. 146Sm–142Nd evidence from Isua metamorphosed sediments for early differentiation of the Earth's mantle. Nature 423, 428–432 (2003). https://doi.org/10.1038/nature01668

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01668

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing