Bose–Einstein condensation of the triplet states in the magnetic insulator TlCuCl3


Bose–Einstein condensation denotes the formation of a collective quantum ground state of identical particles with integer spin or intrinsic angular momentum. In magnetic insulators, the magnetic properties are due to the unpaired shell electrons that have half-integer spin. However, in some such compounds (KCuCl3 and TlCuCl3), two Cu2+ ions are antiferromagnetically coupled1 to form a dimer in a crystalline network: the dimer ground state is a spin singlet (total spin zero), separated by an energy gap from the excited triplet state (total spin one). In these dimer compounds, Bose–Einstein condensation becomes theoretically possible2. At a critical external magnetic field, the energy of one of the Zeeman split triplet components (a type of boson) intersects the ground-state singlet, resulting in long-range magnetic order; this transition represents a quantum critical point at which Bose–Einstein condensation occurs. Here we report an experimental investigation of the excitation spectrum in such a field-induced magnetically ordered state, using inelastic neutron scattering measurements of TlCuCl3 single crystals. We verify unambiguously the theoretically predicted3 gapless Goldstone mode characteristic of the Bose–Einstein condensation of the triplet states.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Contour plot of the magnetic inelastic neutron scattering intensity measured in TlCuCl3.
Figure 2: Dependence on the external magnetic field H of the magnetic excitation energy measured in TlCuCl3 at the Bragg point τ = (0 4 0) r.l.u.
Figure 3: Energy dispersion of the low-lying magnetic excitations measured in TlCuCl3 at H = 14 T.


  1. 1

    Rice, T. M. To condense or not to condense. Science 298, 760–761 (2002)

    CAS  Article  Google Scholar 

  2. 2

    Nikuni, T., Oshikawa, M., Oosawa, A. & Tanaka, H. Bose–Einstein condensation of diluted magnons in TlCuCl3 . Phys. Rev. Lett. 84, 5868–5871 (2000)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Matsumoto, M., Normand, B., Rice, T. M. & Sigrist, M. Magnon dispersion in the field-induced magnetically ordered phase of TlCuCl3 . Phys. Rev. Lett. 89, 077203 (2002)

    ADS  Article  Google Scholar 

  4. 4

    Bose, S. N. Plancks Gesetz und Lichtquantenhypothese. Z. Phys. 26, 178–181 (1924)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Einstein, A. Quantentheorie des einatomigen idealen Gases. Sitzungsber. Kgl. Preuss. Akad. Wiss. 261–267 (1924)

  6. 6

    London, F. The λ-phenomenon of liquid helium and the Bose-Einstein degeneracy. Nature 141, 643–644 (1938)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  8. 8

    Anglin, J. R. & Ketterle, W. Bose–Einstein condensation of atomic gases. Nature 416, 211–218 (2002)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Giamarchi, T. & Tsvelik, A. M. Coupled ladders in a magnetic field. Phys. Rev. B 59, 11398–11407 (1999)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Wessel, S. & Haas, S. Three-dimensional ordering in weakly coupled antiferromagnetic ladders and chains. Phys. Rev. B 62, 316–323 (2000)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Shiramura, W. et al. High-field magnetization processes of double spin chain systems KCuCl3 and TlCuCl3 . J. Phys. Soc. Jpn 66, 1900–1903 (1997)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Oosawa, A., Ishii, M. & Tanaka, H. Field-induced three-dimensional magnetic ordering in the spin gap system TlCuCl3 . J. Phys. Condens. Matter 11, 265–271 (1999)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Oosawa, A., Katori, H. A. & Tanaka, H. Specific heat study of the field-induced magnetic ordering in the spin gap system TlCuCl3 . Phys. Rev. B 63, 134416 (2001)

    ADS  Article  Google Scholar 

  14. 14

    Tanaka, H. et al. Observation of field-induced transverse Néel ordering in the spin gap system TlCuCl3 . J. Phys. Soc. Jpn 70, 939–942 (2001)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Cavadini, N. et al. Magnetic excitations in the quantum spin system TlCuCl3 . Phys. Rev. B 63, 172414 (2001)

    ADS  Article  Google Scholar 

  16. 16

    Oosawa, A. et al. Magnetic excitations in the spin gap system TlCuCl3 . Phys. Rev. B 65, 094426 (2002)

    ADS  Article  Google Scholar 

  17. 17

    Cavadini, N. et al. Triplet excitations in low-Hc spin gap systems KCuCl3 and TlCuCl3: an inelastic neutron scattering study. Phys. Rev. B 65, 132415 (2002)

    ADS  Article  Google Scholar 

  18. 18

    Sachdev, S. Quantum criticality: competing ground states in low dimensions. Science 288, 475–480 (2000)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Kageyama, H. et al. Direct evidence for the localized singlet-triplet excitations and the dispersive multitriplet excitations in SrCu2(BO3)2 . Phys. Rev. Lett. 84, 5876–5879 (2000)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Xu, G. Y., Broholm, C., Reich, D. H. & Adams, M. A. Triplet waves in a quantum spin liquid. Phys. Rev. Lett. 84, 4465–4468 (2000)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Stone, M. B., Zaliznyak, I., Reich, D. H. & Broholm, C. Frustrated three-dimensional quantum spin liquid in CuHpCl. Phys. Rev. B 65, 064423 (2002)

    ADS  Article  Google Scholar 

  22. 22

    Affleck, I. Theory of Haldane-gap antiferromagnets in applied fields. Phys. Rev. B 41, 6697–6702 (1990)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Sachdev, S., Senthil, T. & Shankar, R. Finite-temperature properties of quantum antiferromagnets in a uniform magnetic field in one and two dimensions. Phys. Rev. B 50, 258–272 (1994)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Enderle, M. et al. High-field spin dynamics of antiferromagnetic quantum spin chains. Physica B 276–278, 560–561 (2000)

    ADS  Article  Google Scholar 

  25. 25

    Zheludev, A. et al. Massive triplet excitations in a magnetized anisotropic Haldane spin chain. Phys. Rev. Lett. (submitted)

  26. 26

    Rüegg, Ch. et al. Spin dynamics in the high field phase of quantum critical S = 1/2 TlCuCl3 . Appl. Phys. A 74, S840–S842 (2002)

    Article  Google Scholar 

  27. 27

    Müller, M. & Mikeska, H. J. On the dynamics of coupled S = 1/2 antiferromagnetic zigzag chains. J. Phys. Condens. Matter 12, 7633–7645 (2000)

    ADS  Article  Google Scholar 

  28. 28

    Oosawa, A. et al. Field-induced magnetic ordering in the quantum spin system KCuCl3 . Phys. Rev. B 66, 104405 (2002)

    ADS  Article  Google Scholar 

  29. 29

    Saha-Dasgupta, T. & Valenti, R. Comparative study between two quantum spin systems KCuCl3 and TlCuCl3 . Europhys. Lett. 60, 309–315 (2002)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Schmidt, S. et al. Phonon effects and ESR in NH4CuCl3 . Europhys. Lett. 53, 591–597 (2001)

    ADS  CAS  Article  Google Scholar 

Download references


We thank M. Matsumoto, B. Normand, T. M. Rice, M. Sigrist, M. Müller and H.-J. Mikeska for discussions, M. Meissner, S. Kausche and P. Smeibidl for assistance during the V2 measurements, and F. Thomas for assistance during the IN14 measurements. This work was supported partially by the Swiss National Science Foundation.

Author information



Corresponding author

Correspondence to Ch. Rüegg.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rüegg, C., Cavadini, N., Furrer, A. et al. Bose–Einstein condensation of the triplet states in the magnetic insulator TlCuCl3. Nature 423, 62–65 (2003).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing