Deep roots of the Messinian salinity crisis


The Messinian salinity crisis—the desiccation of the Mediterranean Sea between 5.96 and 5.33 million years (Myr) ago1—was one of the most dramatic events on Earth during the Cenozoic era2. It resulted from the closure of marine gateways between the Atlantic Ocean and the Mediterranean Sea, the causes of which remain enigmatic. Here we use the age and composition of volcanic rocks to reconstruct the geodynamic evolution of the westernmost Mediterranean from the Middle Miocene epoch to the Pleistocene epoch (about 12.1–0.65 Myr ago). Our data show that a marked shift in the geochemistry of mantle-derived volcanic rocks, reflecting a change from subduction-related to intraplate-type volcanism, occurred between 6.3 and 4.8 Myr ago, largely synchronous with the Messinian salinity crisis. Using a thermomechanical model, we show that westward roll back of subducted Tethys oceanic lithosphere and associated asthenospheric upwelling provides a plausible mechanism for producing the shift in magma chemistry and the necessary uplift (1 km) along the African and Iberian continental margins to close the Miocene marine gateways, thereby causing the Messinian salinity crisis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Maps illustrating Late Miocene Atlantic–Mediterranean marine gateways, and the distribution of Miocene–Pleistocene volcanism in the westernmost Mediterranean.
Figure 2: The major- and trace-element geochemistry of Miocene–Pleistocene volcanic rocks in the westernmost Mediterranean changes from subduction-related to intraplate-type during the Messinian.
Figure 3: Trace-element and isotope ratios change during the MSC, consistent with the change from subduction-related to intraplate-type magmatism.
Figure 4: Thermomechanical models illustrating the uplift resulting from roll back of subducted Tethys oceanic lithosphere and associated asthenosphere upwelling as a plausible mechanism for the closure of Late Miocene Atlantic–Mediterranean marine gateways.


  1. 1

    Krijgsman, W., Hilgen, F. J., Raffi, I., Sierro, F. J. & Wilson, D. S. Chronology, causes and progression of the Messinian salinity crisis. Nature 400, 652–655 (1999)

  2. 2

    Hsü, K. J., Ryan, W. B. F. & Cita, M. B. Late Miocene desiccation of the Mediterranean. Nature 242, 240–244 (1973)

  3. 3

    Krijgsman, W. et al. Late Neogene evolution of the Taza-Guercif Basin (Rifean Corridor, Morocco) and implications for the Messinian salinity crisis. Mar. Geol. 153, 147–160 (1999)

  4. 4

    Hodell, D. A., Benson, R. H., Kennet, J. P. & El Bied, K. R. Stable isotope stratigraphy of Latest Miocene sequences in northwest Morocco: The Bou Regreg section. Palaeoceanography 4, 467–482 (1989)

  5. 5

    Esteban, M., Braga, J. C., Martín, J. & de Santisteban, C. in Models for Carbonate Stratigraphy from Miocene Reef Complexes of Mediterranean Regions (eds Franseen, E. K., Esteban, M., Ward, W. C. & Rouchy, J.-M.) 55–72 (SEPM, Society for Sedimentary Geology, Tulsa, 1996)

  6. 6

    Roger, S. et al. 40Ar/39Ar dating of the pre-evaporitic Messinian marine sequences of the Melilla basin (Morocco): a proposal for some biosedimentary events as isochrons around the Alboran Sea. Earth Planet. Sci. Lett. 179, 101–113 (2000)

  7. 7

    Adams, C. G., Benson, R. H., Kidd, R. B., Ryan, W. B. F. & Wright, R. C. The Messinian salinity crisis and evidence of late Miocene eustatic changes in the world ocean. Nature 269, 383–386 (1977)

  8. 8

    Hodell, D. A., Elmstrom, K. M. & Kennett, J. P. Latest Miocene benthic δ18O changes, global ice volume, sea level and the ‘Messinian salinity crisis’. Nature 320, 411–414 (1986)

  9. 9

    Weijermars, R. Neogene tectonics in the Western Mediterranean may have caused the Messinian salinity crisis and an associated glacial event. Tectonophysics 148, 211–219 (1988)

  10. 10

    Garcés, M., Krijgsman, W. & Agustí, J. Chronology of the late Turolian deposits of the Fortuna basin (SE Spain): implications for the Messinian evolution of the eastern Betics. Earth Planet. Sci. Lett. 163, 69–81 (1998)

  11. 11

    Hodell, D. A., Curtis, J. H., Sierro, F. J. & Raymo, M. E. Correlation of late Miocene to early Pliocene sequences between the Mediterranean and North Atlantic. Palaeoceanography 16, 164–178 (2001)

  12. 12

    Platt, J. P. & Vissers, R. L. M. Extensional collapse of thickened continental lithosphere: A working hypothesis for the Alboran Sea and Gibraltar Arc. Geology 17, 540–543 (1989)

  13. 13

    Comas, M. C., Platt, J. P., Soto, J. I. & Watts, A. B. The origin and tectonic history of the Alboran Basin. Proc. ODP Sci. Res. 161, 555–580 (1999)

  14. 14

    Martínez-Ruíz, F., Comas, M. C. & Alonso, B. Mineral associations and geochemical indicators in Upper Miocene to Pleistocene sediments in the Alboran Basin. Proc. ODP Sci. Res. 161, 21–36 (1999)

  15. 15

    Benito, R. et al. Sr and O isotope constraints on source and crustal contamination in the high-K calc-alkaline and shoshonitic neogene volcanic rocks of SE Spain. Lithos 46, 733–802 (1999)

  16. 16

    Turner, S. P. et al. Magmatism associated with orogenic collapse of the Betic-Alboran Domain, SE Spain. J. Petrol. 40, 1011–1036 (1999)

  17. 17

    James, D. E. The combined use of oxygen and radiogenic isotopes as indicators of crustal contamination. Annu. Rev. Earth Planet. Sci. 9, 311–344 (1981)

  18. 18

    Taylor, H. P. Jr & Sheppard, S. M. F. in Stable Isotopes in High Temperature Geologic Processes (eds Valley, J. W., Taylor, H. P. Jr & O'Neil, J. R.) 227–271 (Reviews in Mineralogy 16, Mineralogical Society of America, Washington DC, 1986)

  19. 19

    Allègre, C.-J., Dupré, B., Lambret, B. & Richard, P. The subcontinental versus suboceanic debate; I, Lead-neodymium-strontium isotopes in primary alkali basalts from a shield area; the Ahaggar volcanic suite. Earth Planet. Sci. Lett. 52, 85–92 (1981)

  20. 20

    Gutscher, M.-A. et al. Evidence for active subduction beneath Gibraltar. Geology 30, 1071–1074 (2002)

  21. 21

    Calvert, A. et al. Geodynamic evolution of the lithosphere and upper mantle beneath the Alboran region of the western Mediterranean: Constraints from travel time tomography. J. Geophys. Res. 105, 10871–10898 (2000)

  22. 22

    Gîrbacea, R. & Frisch, W. Slab in the wrong place: Lower lithospheric mantle delamination in the last stage of the Eastern Carpathian subduction retreat. Geology 26, 611–614 (1998)

  23. 23

    Kay, R. W. & Mahlburg Kay, S. Delamination and delamination magmatism. Tectonophysics 219, 177–189 (1993)

  24. 24

    Hsü, K. J. et al. in Initial Reports of the Deep Sea Drilling Project 42 (eds Hsü, K. J. et al.) 1053–1078 (US Government Printing Office, 1978)

  25. 25

    Ellam, R. M. et al. The transition from calc-alkaline to potassic orogenic magmatism in the Aeolian Islands, Southern Italy. Bull. Volcanol. 50, 386–398 (1988)

  26. 26

    Ellam, R. M., Hawkesworth, C. J., Menzies, M. A. & Rogers, N. W. The volcanism of Southern Italy: Role of subduction and the relationship between potassic and sodic alkaline magmatism. J. Geophys. Res. 94, 4589–4601 (1989)

  27. 27

    Taylor, R. N. & Nesbitt, R. W. Isotopic characteristics of subduction fluids in an intra-oceanic setting, Izu-Bonin Arc, Japan. Earth Planet. Sci. Lett. 164, 79–98 (1998)

  28. 28

    Hoernle, K., Bogaard, P. v. d., Duggen, S., Mocek, B. & Garbe-Schönberg, D. Evidence for Miocene subduction beneath the Alboran Sea: 40Ar/39Ar dating and geochemistry of volcanic rocks from Holes 977A and 978A. Proc. ODP Sci. Res. 161, 357–373 (1999)

  29. 29

    Hofmann, A. W. Chemical differentiation of the Earth. The relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 90, 297–314 (1988)

  30. 30

    El Bakkali, S., Gourgaud, A., Bourdier, J.-L., Bellon, H. & Gundogdu, N. Post-collision neogene volcanism of the Eastern Rif (Morocco): magmatic evolution through time. Lithos 45, 523–543 (1998)

  31. 31

    Rüpke, L. H., Phipps Morgan, J., Hort, M. & Conolly, J. A. D. Are the regional variations in Central American arc lavas due to differing basaltic versus peridotitic slab sources of fluids? Geology 30, 1035–1038 (2002)

  32. 32

    Zong, S. & Gurnis, M. Controls on trench topography from dynamic models of subducted slabs. J. Geophys. Res. 99, 15683–15695 (1994)

Download references


We thank K. Reicherter, M. Hort and T. Hansteen for discussions, and M. Bouabdellah, M. Chaieb, D. Garbe-Schönberg, C. Harris, F. Hauff, M. Jadid, J. M. Fernandez Soler, M. Milhi, A. Moukadiri, D. Rau and J. Sticklus for analytical, field or logistic support. This work was supported by the Deutsche Forschungsgemeinschaft.

Author information

Correspondence to Svend Duggen.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Duggen, S., Hoernle, K., van den Bogaard, P. et al. Deep roots of the Messinian salinity crisis. Nature 422, 602–606 (2003).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.