Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer

Abstract

Embryonic signalling pathways regulate progenitor cell fates in mammalian epithelial development and cancer1,2. Prompted by the requirement for sonic hedgehog (Shh) signalling in lung development3,4, we investigated a role for this pathway in regeneration and carcinogenesis of airway epithelium. Here we demonstrate extensive activation of the hedgehog (Hh) pathway within the airway epithelium during repair of acute airway injury. This mode of Hh signalling is characterized by the elaboration and reception of the Shh signal within the epithelial compartment, and immediately precedes neuroendocrine differentiation. We reveal a similar pattern of Hh signalling in airway development during normal differentiation of pulmonary neuroendocrine precursor cells, and in a subset of small-cell lung cancer (SCLC), a highly aggressive and frequently lethal human tumour with primitive neuroendocrine features. These tumours maintain their malignant phenotype in vitro and in vivo through ligand-dependent Hh pathway activation. We propose that some types of SCLC might recapitulate a critical, Hh-regulated event in airway epithelial differentiation. This requirement for Hh pathway activation identifies a common lethal malignancy that may respond to pharmacological blockade of the Hh signalling pathway.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Hedgehog signalling in airway repair and development.
Figure 2: Hh signalling in lung cancer.
Figure 3: Hh pathway activation is essential for the growth of SCLC.
Figure 4: Cyclopamine inhibits SCLC tumorigenicity.

References

  1. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001)

    ADS  CAS  Article  Google Scholar 

  2. Taipale, J. & Beachy, P. A. The Hedgehog and Wnt signalling pathways in cancer. Nature 411, 349–354 (2001)

    ADS  CAS  Article  Google Scholar 

  3. Pepicelli, C. V., Lewis, P. M. & McMahon, A. P. Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr. Biol. 8, 1083–1086 (1998)

    CAS  Article  Google Scholar 

  4. Litingtung, Y., Lei, L., Westphal, H. & Chiang, C. Sonic hedgehog is essential to foregut development. Nature Genet. 20, 58–61 (1998)

    CAS  Article  Google Scholar 

  5. Bellusci, S. et al. Involvement of Sonic hedgehog (Shh) in mouse embryonic lung growth and morphogenesis. Development 124, 53–63 (1997)

    CAS  PubMed  Google Scholar 

  6. Reynolds, S. D., Giangreco, A., Power, J. H. & Stripp, B. R. Neuroepithelial bodies of pulmonary airways serve as a reservoir of progenitor cells capable of epithelial regeneration. Am. J. Pathol. 156, 269–278 (2000)

    CAS  Article  Google Scholar 

  7. Peake, J. L., Reynolds, S. D., Stripp, B. R., Stephens, K. E. & Pinkerton, K. E. Alteration of pulmonary neuroendocrine cells during epithelial repair of naphthalene-induced airway injury. Am. J. Pathol. 156, 279–286 (2000)

    CAS  Article  Google Scholar 

  8. Lee, J., Platt, K. A., Censullo, P. & Ruiz i Altaba, A. Gli1 is a target of Sonic hedgehog that induces ventral neural tube development. Development 124, 2537–2552 (1997)

    CAS  PubMed  Google Scholar 

  9. Goodrich, L. V., Milenkovic, L., Higgins, K. M. & Scott, M. P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277, 1109–1113 (1997)

    CAS  Article  Google Scholar 

  10. Taipale, J. et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406, 1005–1009 (2000)

    ADS  CAS  Article  Google Scholar 

  11. Zochbauer-Muller, S., Gazdar, A. F. & Minna, J. D. Molecular pathogenesis of lung cancer. Annu. Rev. Physiol. 64, 681–708 (2002)

    CAS  Article  Google Scholar 

  12. Ericson, J., Morton, S., Kawakami, A., Roelink, H. & Jessell, T. M. Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell 87, 661–673 (1996)

    CAS  Article  Google Scholar 

  13. Incardona, J. P., Gaffield, W., Kapur, R. P. & Roelink, H. The teratogenic Veratrum alkaloid cyclopamine inhibits sonic hedgehog signal transduction. Development 125, 3553–3562 (1998)

    CAS  Google Scholar 

  14. Cooper, M. K., Porter, J. A., Young, K. E. & Beachy, P. A. Teratogen-mediated inhibition of target tissue response to Shh signaling. Science 280, 1603–1607 (1998)

    ADS  CAS  Article  Google Scholar 

  15. Chen, J. K., Taipale, J., Cooper, M. K. & Beachy, P. A. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev. 16, 2743–2748 (2002)

    CAS  Article  Google Scholar 

  16. Chen, J. K., Taipale, J., Young, K. E., Maiti, T. & Beachy, P. A. Small molecule modulation of Smoothened activity. Proc. Natl Acad. Sci. USA 99, 14071–14076 (2002)

    ADS  CAS  Article  Google Scholar 

  17. Berman, D. M. et al. Medulloblastoma growth inhibition by Hedgehog pathway blockade. Science 297, 1559–1561 (2002)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  18. Park, H. L. et al. Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development 127, 1593–1605 (2000)

    CAS  Google Scholar 

  19. Weaver, M., Yingling, J. M., Dunn, N. R., Bellusci, S. & Hogan, B. L. Bmp signaling regulates proximal-distal differentiation of endoderm in mouse lung development. Development 126, 4005–4015 (1999)

    CAS  PubMed  Google Scholar 

  20. Borges, M. et al. An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature 386, 852–855 (1997)

    ADS  CAS  Article  Google Scholar 

  21. Kenney, A. M. & Rowitch, D. H. Sonic hedgehog promotes G(1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol. Cell Biol. 20, 9055–9067 (2000)

    CAS  Article  Google Scholar 

  22. Dahmane, N. & Ruiz-i-Altaba, A. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126, 3089–3100 (1999)

    Google Scholar 

  23. Wechsler-Reya, R. J. & Scott, M. P. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22, 103–114 (1999)

    CAS  Article  Google Scholar 

  24. Johnson, D. H. Management of small cell lung cancer*: current state of the art. Chest 116, 525S–530S (1999)

    CAS  Article  Google Scholar 

  25. Hogan, B. L., Beddington, R., Constantini, F. & Lacy, E. Manipulating the Mouse Embryo (Cold Spring Harbor Press, Plainview, 1994)

    Google Scholar 

  26. Chang, D. T. et al. Products, genetic linkage and limb patterning activity of a murine hedgehog gene. Development 120, 3339–3353 (1994)

    CAS  PubMed  Google Scholar 

  27. Wang, B., Fallon, J. F. & Beachy, P. A. Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 100, 423–434 (2000)

    CAS  Article  Google Scholar 

  28. Sriuranpong, V. et al. Notch signaling induces rapid degradation of achaete-scute homolog 1. Mol. Cell Biol. 22, 3129–3139 (2002)

    CAS  Article  Google Scholar 

  29. Nakakura, E. K. et al. Mammalian Scratch: a neural-specific Snail family transcriptional repressor. Proc. Natl Acad. Sci. USA 98, 4010–4015 (2001)

    ADS  CAS  Article  Google Scholar 

  30. Park, B. H., Vogelstein, B. & Kinzler, K. W. Genetic disruption of PPARdelta decreases the tumorigenicity of human colon cancer cells. Proc. Natl Acad. Sci. USA 98, 2598–2603 (2001)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge M. Scott for the donation of the Ptch-LacZ mice; A. Joyner for the Flag-Gli1 expression vectors; J. Chen for the gift of KAAD cyclopamine; J. Taipale, S. Karhadkar, B. Nelkin and K. Schuebel for discussions; and E. Gabrielson for help in obtaining lung cancer tissue. We also thank K. Young and L. Meszler and the Sidney Kimmel Comprehensive Cancer Center Cell Imaging Facility for technical assistance. This work is supported by the Flight Attendant Medical Research Institute and the NCI/SPORE. P.A.B. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Neil Watkins.

Ethics declarations

Competing interests

Under a licensing agreement between Curis, Inc. and the Johns Hopkins University, the University holds equity in Curis.

P.A.B and the University are entitled to a share of royalties from sales of products related to the research described in this article.

All financial aspects of these arrangements are managed by the University in accordance with its policies.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Watkins, D., Berman, D., Burkholder, S. et al. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 422, 313–317 (2003). https://doi.org/10.1038/nature01493

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01493

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing