Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ordering and manipulation of the magnetic moments in large-scale superconducting π-loop arrays


The phase of the macroscopic electron-pair wavefunction in a superconductor can vary only by multiples of 2π when going around a closed contour. This results in quantization of magnetic flux, one of the most striking demonstrations of quantum phase coherence in superconductors1,2,3. By using superconductors with unconventional pairing symmetry4,5,6,7, or by incorporating π-Josephson junctions8, a phase shift of π can be introduced in such loops7,9,10. Under appropriate conditions, this phase shift results in doubly degenerate time-reversed ground states, which are characterized by the spontaneous generation of half quanta of magnetic flux, with magnitude 1/2 Φ0(Φ0 = h/2e = 2.07 × 10-15 Wb) (ref. 7). Until now, it has only been possible to generate individual half flux quanta. Here we report the realization of large-scale coupled π-loop arrays based on YBa2Cu3O7-Au-Nb Josephson contacts11,12. Scanning SQUID (superconducting quantum interference device) microscopy has been used to study the ordering of half flux quanta in these structures. The possibility of manipulating the polarities of individual half flux quanta is also demonstrated. These π-loop arrays are of interest as model systems for studying magnetic phenomena—including frustration effects—in Ising antiferromagnets13,14,15,16,17,18. Furthermore, studies of coupled π-loops can be useful for designing quantum computers based on flux-qubits19,20,21,22,23 with viable quantum error correction capabilities24,25.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Generation of half flux quanta in connected and unconnected YBa2Cu3O7-Au-Nb zigzag structures.
Figure 2: Scanning SQUID micrograph of the flux state in a section of a triangular lattice (T = 4.2 K).
Figure 3: Scanning SQUID micrograph of a two-dimensional triangular array of π-loops (10-µm-wide facets, 25-µm spacing) in an 80 µm × 80 µm area.


  1. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  2. Deaver, B. S. Jr & Fairbank, W. M. Experimental evidence for quantized flux in superconducting cylinders. Phys. Rev. Lett. 7, 43–46 (1961)

    ADS  Article  Google Scholar 

  3. Doll, R. & Näbauer, M. Experimental proof of magnetic flux quantization in a superconducting ring. Phys. Rev. Lett. 7, 51–52 (1961)

    ADS  Article  Google Scholar 

  4. Geshkenbein, V. B. & Larkin, A. I. The Josephson effect in superconductors with heavy fermions. JETP Lett. 43, 395–399 (1986)

    ADS  Google Scholar 

  5. Geshkenbein, V. B., Larkin, A. I. & Barone, A. Vortices with half magnetic flux quanta in “heavy-fermion” superconductors. Phys. Rev. B 36, 235–238 (1987)

    ADS  CAS  Article  Google Scholar 

  6. Sigrist, M. & Rice, T. M. Paramagnetic effect in high-Tc superconductors—a hint for d-wave superconductivity. J. Phys. Soc. Jpn 61, 4283–4286 (1992)

    ADS  CAS  Article  Google Scholar 

  7. Tsuei, C. C. & Kirtley, J. R. Pairing symmetry in cuprate superconductors. Rev. Mod. Phys. 72, 969–1016 (2000)

    ADS  CAS  Article  Google Scholar 

  8. Bulaevskii, L. N., Kuzii, V. V. & Sobyanin, A. A. Superconducting system with weak coupling to the current in the ground state. JETP Lett. 25, 290–294 (1977)

    ADS  Google Scholar 

  9. Van Harlingen, D. J. Phase-sensitive tests of the symmetry of the pairing state in the high-temperature superconductors—Evidence for dx2-y2 symmetry. Rev. Mod. Phys. 67, 515–535 (1995)

    ADS  CAS  Article  Google Scholar 

  10. Schulz, R. R. et al. Design and realization of an all d-wave dc π-superconducting quantum interference device. Appl. Phys. Lett. 76, 912–914 (2000)

    ADS  CAS  Article  Google Scholar 

  11. Smilde, H. J. H. et al. d-Wave-induced Josephson current counterflow in YBa2Cu3O7/Nb zigzag junctions. Phys. Rev. Lett. 88, 057004 (2002)

    ADS  CAS  Article  Google Scholar 

  12. Smilde, H. J. H., Hilgenkamp, H., Rijnders, G., Rogalla, H. & Blank, D. H. A. Enhanced transparency ramp-type Josephson contacts through interlayer deposition. Appl. Phys. Lett. 80, 4579–4581 (2002)

    ADS  CAS  Article  Google Scholar 

  13. Aeppli, G. & Chandra, P. Seeking a simple complex system. Science 275, 177–178 (1997)

    CAS  Article  Google Scholar 

  14. Moessner, R. & Sondhi, S. L. Ising models of quantum frustration. Phys. Rev. B 63, 224401 (2001)

    ADS  Article  Google Scholar 

  15. Chandra, P. & Doucot, B. Possible spin-liquid state at large S for the frustrated square Heisenberg lattice. Phys. Rev. B 38, 9335–9338 (1988)

    ADS  CAS  Article  Google Scholar 

  16. Davidovic, D. et al. Magnetic correlations, geometrical frustration, and tunable disorder in arrays of superconducting rings. Phys. Rev. B 55, 6518–6540 (1997)

    ADS  CAS  Article  Google Scholar 

  17. Pannetier, B., Chaussy, J., Rammal, R. & Villegier, J. C. Experimental fine tuning of frustration: Two-dimensional superconducting networks in a magnetic field. Phys. Rev. Lett. 53, 1845–1848 (1984)

    ADS  CAS  Article  Google Scholar 

  18. Lerch, Ph., Leemann, Ch., Theron, R. & Martinoli, P. Dynamics of the phase transition in proximity-effect arrays of Josephson junctions at full frustration. Phys. Rev. B 41, 11579–11582 (1990)

    ADS  CAS  Article  Google Scholar 

  19. Mooij, J. E. et al. Josephson persistent-current qubit. Science 285, 1036–1039 (1999)

    CAS  Article  Google Scholar 

  20. Van der Wal, C. et al. Quantum superposition of macroscopic persistent-current states. Science 290, 773–777 (2000)

    ADS  CAS  Article  Google Scholar 

  21. Friedman, J. R., Patel, V., Chen, W., Tolpygo, S. K. & Lukens, J. E. Quantum superposition of distinct macroscopic states. Nature 406, 43–46 (2000)

    ADS  CAS  Article  Google Scholar 

  22. Ioffe, L. B., Geshkenbein, V. B., Feigel'man, M. V., Fauchère, A. L. & Blatter, G. Environmentally decoupled sds-wave Josephson junctions for quantum computing. Nature 398, 679–681 (1999)

    ADS  Article  Google Scholar 

  23. Blais, A. & Zagoskin, A. Operation of universal gates in a solid-state quantum computer based on clean Josephson junctions between d-wave superconductors. Phys. Rev. A 61, 042308 (2000)

    ADS  Article  Google Scholar 

  24. Preskill, J. Reliable quantum computers. Proc. R. Soc. Lond. A 454, 385–410 (1998)

    ADS  Article  Google Scholar 

  25. Bennett, C. H. & DiVincenzo, D. P. Quantum information and computation. Nature 404, 247–255 (2000)

    ADS  CAS  Article  Google Scholar 

  26. Rogers, F. P. A Device for Experimental Observation of Flux Vortices Trapped in Superconducting Thin Films. Thesis, MIT, Boston (1983)

    Google Scholar 

  27. Vu, L. N. & Van Harlingen, D. J. Design and implementation of a scanning SQUID microscope. IEEE Trans. Appl. Supercond. 3, 1918–1921 (1993)

    ADS  Article  Google Scholar 

  28. Black, R. C. Magnetic microscopy using a liquid nitrogen cooled YBa2Cu3O7 superconducting quantum interference device. Appl. Phys. Lett. 62, 2128–2130 (1993)

    ADS  CAS  Article  Google Scholar 

  29. Kirtley, J. R. et al. High-resolution scanning SQUID microscope. Appl. Phys. Lett. 66, 1138–1140 (1995)

    ADS  CAS  Article  Google Scholar 

  30. Cowley, J. M. An approximate theory of order in alloys. Phys. Rev. 77, 669–675 (1950)

    ADS  CAS  Article  Google Scholar 

  31. Gardner, B. W. et al. Scanning superconducting quantum interference device susceptometry. Rev. Sci. Instrum. 72, 2361–2364 (2001)

    ADS  CAS  Article  Google Scholar 

  32. Kirtley, J. R., Moler, K. A. & Scalapino, D. J. Spontaneous flux and magnetic-interference patterns in 0-π Josephson junctions. Phys. Rev. B 56, 886–891 (1997)

    ADS  CAS  Article  Google Scholar 

Download references


We thank R. H. Koch, J. Mannhart, D. M. Newns and D. J. Scalapino for discussions. This work was supported by the Dutch Foundation for Research on Matter (FOM), the Netherlands Organization for Scientific Research (NWO), the Royal Dutch Academy of Arts and Sciences (KNAW) and the European Science Foundation (ESF) PiShift programme.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hans Hilgenkamp.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hilgenkamp, H., Ariando, Smilde, HJ. et al. Ordering and manipulation of the magnetic moments in large-scale superconducting π-loop arrays. Nature 422, 50–53 (2003).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing