Letter | Published:

Zero-resistance states induced by electromagnetic-wave excitation in GaAs/AlGaAs heterostructures

Abstract

The observation of vanishing electrical resistance in condensed matter has led to the discovery of new phenomena such as, for example, superconductivity, where a zero-resistance state can be detected in a metal below a transition temperature Tc (ref. 1). More recently, quantum Hall effects were discovered from investigations of zero-resistance states at low temperatures and high magnetic fields in two-dimensional electron systems (2DESs)2,3,4. In quantum Hall systems and superconductors, zero-resistance states often coincide with the appearance of a gap in the energy spectrum1,2,4. Here we report the observation of zero-resistance states and energy gaps in a surprising setting5: ultrahigh-mobility GaAs/AlGaAs heterostructures that contain a 2DES exhibit vanishing diagonal resistance without Hall resistance quantization at low temperatures and low magnetic fields when the specimen is subjected to electromagnetic wave excitation. Zero-resistance-states occur about magnetic fields B = 4/5 Bf and B = 4/9 Bf, where Bf = 2πfm*/e,m* is the electron mass, e is the electron charge, and f is the electromagnetic-wave frequency. Activated transport measurements on the resistance minima also indicate an energy gap at the Fermi level6. The results suggest an unexpected radiation-induced, electronic-state-transition in the GaAs/AlGaAs 2DES.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

References

  1. 1

    Tinkham, M. Introduction to Superconductivity, 2nd edn (McGraw-Hill, New York, 1996)

  2. 2

    Prange, R. E. & Girvin, S. M. (eds) The Quantum Hall Effect, 2nd edn (Springer, New York, 1990)

  3. 3

    Tsui, D. C., Stormer, H. L. & Gossard, A. C. Zero-resistance state of two dimensional electrons in a quantizing magnetic field. Phys. Rev. B 25, 1405–1407 (1982)

  4. 4

    Ando, T., Fowler, A. B. & Stern, F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982)

  5. 5

    Mani, R. G., Smet, J. H., von Klitzing, K., Narayanamurti, V. & Umansky, V. Single particle and collective response in the magnetophotoresistance of a high mobility 2DES under microwave excitation. Bull. Am. Phys. Soc. 46, 972 (2001)

  6. 6

    von Klitzing, K., et al. Proc. 17th Int. Conf. on the Physics Of Semiconductors (eds Chadi, D. J. & Harrison, W. A.) 271–274 (Springer, New York, 1985)

  7. 7

    Zudov, M. A., Du, R. R., Simmons, J. A. & Reno, J. L. Shubnikov-de Haas-like oscillations in millimeterwave photoconductivity in a high mobility two-dimensional electron gas. Phys. Rev. B 64, 201311 (2001)

  8. 8

    Nicholas, R. J., Brummell, M. A. & Portal, J. C. Two-Dimensional Systems, Heterostructures and Superlattices Springer Series in Solid State Sciences (eds Bauer, G., Kuchar, F. & Heinrich, H.) Vol. 53 69–78 (Springer, Berlin, 1984)

  9. 9

    Sze, S. M. Physics of Semiconductor Devices, 2nd edn 850 (Wiley, New York, 1981)

  10. 10

    Mani, R. G. & Anderson, J. R. Study of the single particle and transport lifetimes in GaAs/AlxGa1-xAs. Phys. Rev. B 37, 4299–4302 (1988)

  11. 11

    Englert, Th., Mann, J. C., Uihlein, Ch., Tsui, D. C. & Gossard, A. C. Observation of oscillatory linewidth in the cyclotron resonance of GaAs/AlxGa1-xAs heterostructures. Solid State Commun. 46, 545–548 (1983)

  12. 12

    Schlesinger, Z., Allen, S. J., Huang, J. C. M., Platzmann, P. M. & Tzoar, N. Cyclotron resonance in two dimensions. Phys. Rev. B 30, 435–437 (1984)

  13. 13

    Kohn, W. Cyclotron resonance and de Haas-van Alphen oscillations of an interacting electron gas. Phys. Rev. 123, 1242–1242 (1961)

  14. 14

    Ando, T. Mass enhancement and subharmonic structure of cyclotron resonance in an interacting two-dimensional electron gas. Phys. Rev. Lett. 36, 1383–1385 (1976)

  15. 15

    Klahn, S., Horst, M. & Merkt, U. Proc. 18th Int. Conf. on the Physics of Semiconductors (ed. Engstrom, O.) Vol. 2 1161–1163 (World Scientific, Singapore, 1987)

  16. 16

    Heitmann, D. Two-dimensional plasmons in homogeneous and laterally microstructured space charge layers. Surf. Sci. 170, 332–345 (1986)

  17. 17

    Allen, S. J. Jr, Tsui, D. C. & Logan, R. A. Observation of two-dimensional plasmon in silicon inversion layers. Phys. Rev. Lett. 38, 980–983 (1977)

  18. 18

    Theis, T. N., Kotthaus, J. P. & Stiles, P. J. Wavevector dependence of the two-dimensional plasmon dispersion relationship in the (100) Si inversion layer. Solid State Commun. 26, 603–606 (1977)

  19. 19

    Vasiliadou, E. et al. Collective response in the microwave photoconductivity of Hall bar structures. Phys. Rev. B 48, 17145–17148 (1993)

  20. 20

    Lerner, I. V. & Lozovik, Yu. E. Two-dimensional electron-hole system in a strong magnetic field as an almost ideal exciton gas. Sov. Phys. JETP 53, 763–770 (1981)

  21. 21

    Kallin, C. & Halperin, B. I. Excitations from a filled Landau level in the two-dimensional electron gas. Phys. Rev. B 30, 5655–5668 (1984)

  22. 22

    Bychkov, Yu. A., Maniv, T. & Vagner, I. D. Nuclear spin diffusion via spin-excitons in the quantum Hall regime. Solid State Commun. 94, 61–65 (1995)

  23. 23

    Little, W. A. Possibility of synthesizing an organic superconductor. Phys. Rev. 134, A1416–A1424 (1965)

  24. 24

    Ginzburg, V. L. The problem of high temperature superconductivity. II. Sov. Phys. Uspekhi. 13, 335–352 (1970)

  25. 25

    Allender, D., Bray, J. & Bardeen, J. Model for an exciton mechanism of superconductivity. Phys. Rev. B 7, 1020–1029 (1973)

  26. 26

    Davis, D., Gutfreund, H. & Little, W. A. Proposed model of a high temperature excitonic superconductor. Phys. Rev. B. 13, 4766–4779 (1976)

  27. 27

    Hirsch, J. E. & Scalapino, D. J. Enhanced superconductivity in quasi two-dimensional systems. Phys. Rev. Lett. 56, 2732–2735 (1986)

  28. 28

    Bezryadin, A., Lau, C. N. & Tinkham, M. Quantum suppression of superconductivity in ultrathin nanowires. Nature 404, 971–974 (2000)

  29. 29

    Paquet, D., Rice, T. M. & Ueda, K. Two-dimensional electron-hole fluid in a strong perpendicular magnetic field: exciton Bose condensate or maximum density two-dimensional droplet. Phys. Rev. B 32, 5208–5221 (1985)

  30. 30

    Kellogg, M., Spielman, I. B., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Observation of quantized Hall drag in a strongly correlated bilayer electron system. Phys. Rev. Lett. 88, 126804 (2002)

  31. 31

    Butov, L. V., Gossard, A. C. & Chemla, D. S. Macroscopically ordered state in an exciton system. Nature 418, 751–754 (2002)

  32. 32

    Snoke, S., Denev, S., Liu, Y., Pfeiffer, L. & West, K. Long-range transport in excitonic dark states in coupled quantum wells. Nature 418, 754–757 (2002)

Download references

Acknowledgements

We acknowledge discussions with E. Demler, H. Fertig, R. Gerhardts, W. Hanke, C. Kallin, M. Kruger, L. Manchanda, S. Mikhailov, A. Stern and M. Tinkham. This work has been supported by the ARO, BMBF, CSR at SRC, DFG and GIF.

Author information

Competing interests

The authors declare that they have no competing financial interests.

Correspondence to Ramesh G. Mani.

Rights and permissions

Reprints and Permissions

About this article

Further reading

Figure 1: The Hall effect and the magnetoresistance in a high-mobility 2DES, with and without electromagnetic-wave excitation.
Figure 2: The development of the radiation-induced zero-resistance states with the electromagnetic-wave frequency, f.
Figure 3: The dependence of the magnetoresistance upon the radiation power, current and the temperature.
Figure 4: Energy commensurability, inter-Landau-level electron–hole excitations, and the pairing conjecture.

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.