Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Calcium activation of BKCa potassium channels lacking the calcium bowl and RCK domains


In many physiological systems such as neurotransmitter release, smooth muscle relaxation and frequency tuning of auditory hair cells, large-conductance calcium-activated potassium (BKCa) channels create a connection between calcium signalling pathways and membrane excitability1,2,3,4. BKCa channels are activated by voltage and by micromolar concentrations of intracellular calcium. Although it is possible to open BKCa channels in the absence of calcium5,6,7,8,9, calcium binding is essential for their activation under physiological conditions. In the presence of intracellular calcium, BKCa channels open at more negative membrane potentials5,10,11,12,13,14. Many experiments investigating the molecular mechanism of calcium activation of the BKCa channel have focused on the large intracellular carboxy terminus, and much evidence supports the hypothesis that calcium-binding sites are located in this region of the channel. Here we show that BKCa channels that lack the whole intracellular C terminus retain wild-type calcium sensitivity. These results show that the intracellular C terminus, including the ‘calcium bowl’ and the RCK domain, is not necessary for the calcium-activated opening of these channels.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The truncated BKCa channel retains normal function.
Figure 2: The truncated BKCa channel is activated by micromolar levels of Ca2+.
Figure 3: Mean open time is altered in truncated BKCa channels.
Figure 4: Data are not contaminated by endogenous BKCa channel subunits.


  1. Nelson, M. T. et al. Relaxation of arterial smooth muscle by calcium sparks. Science 270, 633–637 (1995)

    ADS  CAS  Article  Google Scholar 

  2. Lewis, R. S. & Hudspeth, A. J. Voltage- and ion-dependent conductances in solitary vertebrate hair cells. Nature 304, 538–541 (1983)

    ADS  CAS  Article  Google Scholar 

  3. Robitaille, R., Garcia, M. L., Kaczorowski, G. J. & Charlton, M. P. Functional colocalization of calcium and calcium-gated potassium channels in control of transmitter release. Neuron 11, 645–655 (1993)

    CAS  Article  Google Scholar 

  4. Crawford, A. C. & Fettiplace, R. An electrical tuning mechanism in turtle cochlear hair cells. J. Physiol. (Lond.) 312, 377–412 (1981)

    CAS  Article  Google Scholar 

  5. Cui, J., Cox, D. H. & Aldrich, R. W. Intrinsic voltage dependence and Ca2+ regulation of mslo large conductance Ca-activated K+ channels. J. Gen. Physiol. 109, 647–673 (1997)

    CAS  Article  Google Scholar 

  6. Stefani, E. et al. Voltage-controlled gating in a large conductance Ca2+-sensitive K+ channel (hslo). Proc. Natl Acad. Sci. USA 94, 5427–5431 (1997)

    ADS  CAS  Article  Google Scholar 

  7. Horrigan, F. T., Cui, J. & Aldrich, R. W. Allosteric voltage gating of potassium channels I. Mslo ionic currents in the absence of Ca2+. J. Gen. Physiol. 114, 277–304 (1999)

    CAS  Article  Google Scholar 

  8. Talukder, G. & Aldrich, R. W. Complex voltage-dependent behavior of single unliganded calcium-sensitive potassium channels. Biophys. J. 78, 761–772 (2000)

    ADS  CAS  Article  Google Scholar 

  9. Nimigean, C. M. & Magleby, K. L. The β subunit increases the Ca2+ sensitivity of large conductance Ca2+-activated potassium channels by retaining the gating in the bursting states. J. Gen. Physiol. 113, 425–440 (1999)

    CAS  Article  Google Scholar 

  10. Marty, A. Ca2+-dependent K+ channels with large unitary conductance in chromaffin cell membranes. Nature 291, 497–500 (1981)

    ADS  CAS  Article  Google Scholar 

  11. Pallotta, B. S., Magleby, K. L. & Barrett, J. N. Single channel recordings of Ca2+-activated K+ currents in rat muscle cell culture. Nature 293, 471–474 (1981)

    ADS  CAS  Article  Google Scholar 

  12. Cox, D. H., Cui, J. & Aldrich, R. W. Allosteric gating of a large conductance Ca2+-activated K+ channel. J. Gen. Physiol. 110, 257–281 (1997)

    CAS  Article  Google Scholar 

  13. Rothberg, B. S. & Magleby, K. L. Gating kinetics of single large-conductance Ca2+-activated K+ channels in high Ca2+ suggest a two-tiered allosteric gating mechanism. J. Gen. Physiol. 114, 93–124 (1999)

    CAS  Article  Google Scholar 

  14. Rothberg, B. S. & Magleby, K. L. Voltage and Ca2+ activation of single large-conductance Ca2+-activated K+ channels described by a two-tiered allosteric gating mechanism. J. Gen. Physiol. 116, 75–99 (2000)

    CAS  Article  Google Scholar 

  15. Schreiber, M. & Salkoff, L. A novel calcium-sensing domain in the BK channel. Biophys. J. 73, 1355–1363 (1997)

    CAS  Article  Google Scholar 

  16. Schreiber, M., Yuan, A. & Salkoff, L. Transplantable sites confer calcium sensitivity to BK channels. Nature Neurosci. 2, 416–421 (1999)

    CAS  Article  Google Scholar 

  17. Wei, A., Solaro, C., Lingle, C. & Salkoff, L. Calcium sensitivity of BK-type KCa channels determined by a separable domain. Neuron 13, 671–681 (1994)

    CAS  Article  Google Scholar 

  18. Bian, S., Favre, I. & Moczydlowski, E. Ca2+-binding activity of a COOH-terminal fragment of the Drosophila BK channel involved in Ca2+-dependent activation. Proc. Natl Acad. Sci. USA 98, 4776–4781 (2001)

    ADS  CAS  Article  Google Scholar 

  19. Braun, A. F. & Sy, L. Contribution of potential EF hand motifs to the calcium-dependent gating of a mouse brain large conductance, calcium-sensitive K+ channel. J. Physiol. (Lond.) 533, 681–695 (2001)

    ADS  CAS  Article  Google Scholar 

  20. Bao, L., Rapin, A. M., Holmstrand, E. C. & Cox, D. H. Elimination of the BKCa channel's high-affinity Ca2+ sensitivity. J. Gen. Physiol. 120, 173–189 (2002)

    CAS  Article  Google Scholar 

  21. Xia, X. M., Zeng, X. & Lingle, C. J. Multiple regulatory sites in large-conductance calcium-activated potassium channels. Nature 418, 880–884 (2002)

    ADS  CAS  Article  Google Scholar 

  22. Jiang, Y. et al. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417, 515–522 (2002)

    ADS  CAS  Article  Google Scholar 

  23. Bravo-Zehnder, M. et al. Apical sorting of a voltage- and Ca2+-activated K+ channel α-subunit in Madin–Darby canine kidney cells is independent of N-glycosylation. Proc. Natl Acad. Sci. USA 97, 13114–13119 (2000)

    ADS  CAS  Article  Google Scholar 

  24. Quirk, J. C. & Reinhart, P. H. Identification of a novel tetramerization domain in large conductance KCa channels. Neuron 32, 13–23 (2001)

    CAS  Article  Google Scholar 

  25. Krause, J. D., Foster, C. D. & Reinhart, P. H. Xenopus laevis oocytes contain endogenous large conductance Ca2+-activated K+ channels. Neuropharmacology 35, 1017–1022 (1996)

    CAS  Article  Google Scholar 

  26. Shen, K. Z. et al. Tetraethylammonium block of Slowpoke calcium-activated potassium channels expressed in Xenopus oocytes: evidence for tetrameric channel formation. Pflugers Arch. 426, 440–445 (1994)

    CAS  Article  Google Scholar 

  27. Niu, X. & Magleby, K. L. Stepwise contribution of each subunit to the cooperative activation of BK channels by Ca2+. Proc. Natl Acad. Sci. USA 99, 11441–11446 (2002)

    ADS  CAS  Article  Google Scholar 

  28. Zhu, G., Zhang, Y., Xu, H. & Jiang, C. Identification of endogenous outward currents in the human embryonic kidney (HEK 293) cell line. J. Neurosci. Methods 81, 73–83 (1998)

    CAS  Article  Google Scholar 

  29. Colquhoun, D. Binding, gating, affinity and efficacy: the interpretation of structure–activity relationships for agonists and of the effects of mutating receptors. Br. J. Pharmacol. 125, 924–947 (1998)

    CAS  Article  Google Scholar 

  30. Horrigan, F. T. & Aldrich, R. W. Coupling between voltage-sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels. J. Gen. Physiol. 120, 267–305 (2002)

    CAS  Article  Google Scholar 

Download references


We thank S. Wiler for help with mutagenesis; and R. Lewis, M. Maduke, J. Trimmer, T. Middendorf, J. Sack and S. Pyott for critically reading the manuscript. R.P. was supported by a training grant from the National Institutes of Health. R.W.A is an investigator for the Howard Hughes Medical Institute.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Richard W. Aldrich.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Piskorowski, R., Aldrich, R. Calcium activation of BKCa potassium channels lacking the calcium bowl and RCK domains. Nature 420, 499–502 (2002).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing