Mechanisms and circuitry underlying directional selectivity in the retina


In the retina, directionally selective ganglion cells respond with robust spiking to movement in their preferred direction, but show minimal response to movement in the opposite, or null, direction1,2. The mechanisms and circuitry underlying this computation have remained controversial3. Here we show, by isolating the excitatory and inhibitory inputs to directionally selective cells and measuring direct connections between these cells and presynaptic neurons, that a presynaptic interneuron, the starburst amacrine cell, delivers direct inhibition to directionally selective cells. The processes of starburst cells are connected asymmetrically to directionally selective cells: those pointing in the null direction deliver inhibition; those pointing in the preferred direction do not. Starburst cells project inhibition laterally ahead of a stimulus moving in the null direction. In addition, starburst inhibition is itself directionally selective: it is stronger for movement in the null direction. Excitation in response to null direction movement is reduced by an inhibitory signal acting at a site that is presynaptic to the directionally selective cell. The interplay of these components generates reduced excitation and enhanced inhibition in the null direction, thereby ensuring robust directional selectivity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Excitatory and inhibitory inputs to DS ganglion cells: asymmetries in magnitude and space.
Figure 2: Starburst cells on the null side supply directionally selective inhibition to DS cells.
Figure 3: Null movement vetoes excitatory input to the DS cell.
Figure 4: Proposed circuitry underlying the DS response.


  1. 1

    Barlow, H. B. & Hill, R. M. Selective sensitivity to direction of movement in ganglion cells of rabbit retina. Science 139, 412–414 (1963)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Barlow, H. B. & Levick, W. R. Mechanism of directionally selective units in rabbits retina. J. Physiol. (Lond.) 178, 477–504 (1965)

    CAS  Article  Google Scholar 

  3. 3

    Vaney, D. I., He, S., Taylor, W. R. & Levick, W. R. Motion Vision—Computational, Neural, and Ecological Constraints (ed. Zeil, J.) 13–56 (Springer, Berlin, 2001)

    Google Scholar 

  4. 4

    Kittila, C. A. & Massey, S. C. Pharmacology of directionally selective ganglion cells in the rabbit retina. J. Neurophysiol. 77, 675–689 (1997)

    CAS  Article  Google Scholar 

  5. 5

    Caldwell, J. H., Daw, N. W. & Wyatt, H. J. Effects of picrotoxin and strychnine on rabbit retinal ganglion-cells—lateral interactions for cells with more complex receptive fields. J. Physiol. (Lond.) 276, 277–298 (1978)

    CAS  Article  Google Scholar 

  6. 6

    Famiglietti, E. V. Dendritic Costratification of on and on-off directionally selective ganglion-cells with starburst amacrine cells in rabbit retina. J. Comp. Neurol. 324, 322–335 (1992)

    CAS  Article  Google Scholar 

  7. 7

    Vaney, D. I. & Pow, D. V. The dendritic architecture of the cholinergic plexus in the rabbit retina: selective labeling by glycine accumulation in the presence of sarcosine. J. Comp. Neurol. 421, 1–13 (2000)

    CAS  Article  Google Scholar 

  8. 8

    O'Malley, D. M., Sandell, J. H. & Masland, R. H. Corelease of acetylcholine and GABA by the starburst amacrine cells. J. Neurosci. 12, 1394–1408 (1992)

    CAS  Article  Google Scholar 

  9. 9

    Brecha, N., Johnson, D., Peichl, L. & Wässle, H. Cholinergic amacrine cells of the rabbit retina contain glutamate-decarboxylase and γ-aminobutyrate immunoreactivity. Proc. Natl Acad. Sci. USA 85, 6187–6191 (1988)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Vaney, D. I. & Young, H. M. GABA-like immunoreactivity in cholinergic amacrine cells of the rabbit retina. Brain Res. 438, 369–373 (1988)

    CAS  Article  Google Scholar 

  11. 11

    He, S. G. & Masland, R. H. Retinal direction selectivity after targeted laser ablation of starburst amacrine cells. Nature 389, 378–382 (1997)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Yoshida, K. et al. A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement. Neuron 30, 771–780 (2001)

    CAS  Article  Google Scholar 

  13. 13

    Taylor, W. R., He, S. Y., Levick, W. R. & Vaney, D. I. Dendritic computation of direction selectivity by retinal ganglion cells. Science 289, 2347–2350 (2000)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Borg-Graham, L. J. The computation of directional selectivity in the retina occurs presynaptic to the ganglion cell. Nature Neurosci. 4, 176–183 (2001)

    CAS  Article  Google Scholar 

  15. 15

    Famiglietti, E. V. Starburst amacrine cells and cholinergic neurons—mirror-symmetric on and off amacrine cells of rabbit retina. Brain Res. 261, 138–144 (1983)

    Article  Google Scholar 

  16. 16

    Masland, R. H., Mills, J. W. & Hayden, S. A. Acetylcholine-synthesizing amacrine cells—identification and selective staining by using autoradiography and fluorescent markers. Proc. R. Soc. Lond. Ser. B 223, 79–100 (1984)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Masland, R. H. & Mills, J. W. Autoradiographic identification of acetylcholine in the rabbit retina. J. Cell Biol. 83, 159–178 (1979)

    CAS  Article  Google Scholar 

  18. 18

    Linn, D. M., Blazynski, C., Redburn, D. A. & Massey, S. C. Acetylcholine-release from the rabbit retina mediated by kainate receptors. J. Neurosci. 11, 111–122 (1991)

    CAS  Article  Google Scholar 

  19. 19

    Masland, R. H. & Ames, A. Responses to acetylcholine of ganglion-cells in an isolated mammalian retina. J. Neurophysiol. 39, 1220–1235 (1976)

    CAS  Article  Google Scholar 

  20. 20

    Famiglietti, E. V. Starburst amacrine cells—morphological constancy and systematic variation in the anisotropic field of rabbit retinal neurons. J. Neurosci. 5, 562–577 (1985)

    CAS  Article  Google Scholar 

  21. 21

    Peters, B. N. & Masland, R. H. Responses to light of starburst amacrine cells. J. Neurophysiol. 75, 469–480 (1996)

    CAS  Article  Google Scholar 

  22. 22

    Borg-Graham, L. J. & Grzywacz, N. M. Single Neuron Computation (ed. Zornetzer, S. F.) 347–375 (Academic, London, 1992)

    Google Scholar 

  23. 23

    Poznanski, R. R. Modeling the electrotonic structure of starburst amacrine cells in the rabbit retina—a functional interpretation of dendritic morphology. Bull. Math. Biol. 54, 905–928 (1992)

    CAS  Article  Google Scholar 

  24. 24

    Vaney, D. I. Progress in Retinal Research (ed. Chader, G. J.) 49–100 (Oxford, Pergamon, 1990)

    Google Scholar 

  25. 25

    Famiglietti, E. V. Synaptic organization of starburst amacrine cells in rabbit retina—analysis of serial thin-sections by electron-microscopy and graphic reconstruction. J. Comp. Neurol. 309, 40–70 (1991)

    CAS  Article  Google Scholar 

  26. 26

    Euler, T., Detwiler, P. B. & Denk, W. Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418, 845–852 (2002)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Mills, S. L. & Massey, S. C. Morphology of bipolar cells labelled by DAPI in the rabbit retina. J. Comp. Neurol. 321, 133–149 (1992)

    CAS  Article  Google Scholar 

  28. 28

    Roska, B. & Werblin, F. Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature 410, 583–587 (2001)

    ADS  CAS  Article  Google Scholar 

Download references


We thank K. Okazaki for help with confocal preparations and image analysis; J. Hurtado, R. Kramer and C. Kretschmann for discussion; and H. Barlow, R. Froemke, E. Isacoff, X. Ren and R. Zucker for comments on the manuscript. This work was supported by grants from the Office of Naval Research, the National Eye Institute, and an NIH training grant in Vision Science to the University of California Berkeley (S.F.).

Author information



Corresponding author

Correspondence to Frank S. Werblin.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fried, S., Münch, T. & Werblin, F. Mechanisms and circuitry underlying directional selectivity in the retina. Nature 420, 411–414 (2002).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing