Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Links between climate and sea levels for the past three million years

Abstract

The oscillations between glacial and interglacial climate conditions over the past three million years have been characterized by a transfer of immense amounts of water between two of its largest reservoirs on Earth — the ice sheets and the oceans. Since the latest of these oscillations, the Last Glacial Maximum (between about 30,000 and 19,000 years ago), 50 million cubic kilometres of ice has melted from the land-based ice sheets, raising global sea level by 130 metres. Such rapid changes in sea level are part of a complex pattern of interactions between the atmosphere, oceans, ice sheets and solid earth, all of which have different response timescales. The trigger for the sea-level fluctuations most probably lies with changes in insolation, caused by astronomical forcing, but internal feedback cycles complicate the simple model of causes and effects.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: δ18O records for the past 5 Myr from two sediment cores.
Figure 2: Relative sea level and insolation for the last glacial cycle.
Figure 3: Comparison of MIS-3 sea-level oscillations and Atlantic sediment records.
Figure 4: Sea-level fluctuations near former ice margins.
Figure 5: Changes in global ice volume from the time of the LGM to the present.

References

  1. Mix, A. C. & Ruddiman, W. F. Oxygen isotope analyses and Pleistocene ice volumes. Quat. Res. 21, 1–20 (1984).

    CAS  Google Scholar 

  2. Shackleton, N. J. Oxygen isotope analyses and Pleistocene temperatures re-assessed. Nature 215, 15–17 (1967).

    ADS  CAS  Google Scholar 

  3. Raymo, M. E. in Start of a Glacial (eds Kukla, G. J. & Went, E.) 207–223 (Springer, Berlin, 1992).

    Google Scholar 

  4. Haug, G. H. & Tiedeman, R. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature 393, 673–676 (1998).

    ADS  CAS  Google Scholar 

  5. Shackleton, N. J. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307, 620–623 (1984).

    ADS  CAS  Google Scholar 

  6. Shackleton, N. J. & Opdyke, N. D. Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific core V28-238: oxygen isotope temperatures and ice volumes on a 105 year scale and 106 year scale. Quat. Res. 3, 39–55 (1973).

    CAS  Google Scholar 

  7. Broecker, W. S. & van Donk, J. Insolation changes, ice volumes and the 18O record in deep-sea cores. Rev. Geophys. Space Phys. 8, 169–198 (1970).

    ADS  CAS  Google Scholar 

  8. Chappell, J. Geology of coral terraces, Huon Peninsula, New Guinea: a study of Quaternary tectonic movements and sea-level changes. Bull. Geol. Soc. Am. 85, 553–570 (1974).

    Google Scholar 

  9. Pirazolli, P. A. et al. Quaternary raised coral-reef terraces on Sumba Island, Indonesia. Science 252, 1834–1836 (1991).

    ADS  Google Scholar 

  10. Stirling, C. H. et al. Orbital forcing of the marine isotope stage 9 interglacial. Science 291, 290–293 (2001).

    ADS  CAS  PubMed  Google Scholar 

  11. Broecker, W. S. & Denton, G. H. The role of ocean-atmosphere reorganizations in glacial cycles. Geochim. Cosmochim. Acta 53, 2465–2501(1989).

    ADS  CAS  Google Scholar 

  12. McManus, J. F., Oppo, D. W. & Cullen, J. L. A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science 283, 971–975 (1999).

    ADS  CAS  PubMed  Google Scholar 

  13. MacAyeal, D. R. Binge/purge oscillations of the Laurentide ice sheets as a cause of the North Atlantic's Heinrich events. Paleoceanography 8, 775–784 (1993).

    ADS  Google Scholar 

  14. Alley, R. B. & Clark, P. U. The deglaciation of the northern hemisphere: a global perspective. Annu. Rev. Earth Planet. Sci. 27, 149–182 (1999).

    ADS  CAS  Google Scholar 

  15. Hay, W. W. The cause of the Late Cenozoic Northern Hemisphere glaciations: a climate change enigma. Terra Nova 4, 305–311 (1992).

    ADS  Google Scholar 

  16. Berger, A. Milankovitch theory and climate. Rev. Geophys. 26, 624–657 (1988).

    ADS  Google Scholar 

  17. Emiliani, C. Pleistocene temperatures. J. Geol. 63, 538–578 (1955).

    ADS  CAS  Google Scholar 

  18. Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in the earth's orbit: pacemaker of the ice ages. Science 194, 1121–1132 (1976).

    ADS  CAS  PubMed  Google Scholar 

  19. Duplessy, J. C., Chenouard, L. & Villa, F. Weyl's theory of glaciation supported by isotopic study of Norwegian core K11. Science 188, 1208–1209 (1975).

    ADS  CAS  PubMed  Google Scholar 

  20. Imbrie, J. et al. On the structure and origin of major glaciation cycles, 2. The 100,000-year cycle. Paleoceanography 8, 699–735 (1993).

    ADS  Google Scholar 

  21. Berger, A, Loutre, M. F. Lascar, J. Stability of the astronomical frequencies over the earth's history for paleoclimate studies. Science 255, 560–566 (1992).

    ADS  CAS  PubMed  Google Scholar 

  22. Imbrie, J. et al. On the structure and origin of major glaciation cycles, 1. Linear responses to Milankovitch forcing. Paleoceanography 7, 701–738 (1992).

    ADS  Google Scholar 

  23. Imbrie, J., Berger, A. & Shackleton, N. J. in Global Changes in the Perspective of the Past (eds Eddy, J. A. & Oescher, H.) 263–277 (Wiley, Chichester, 1993).

    Google Scholar 

  24. Imbrie, J. & Imbrie, J. Z. Modelling the climatic responses to orbital variations. Science 207, 943–953 (1980).

    ADS  CAS  PubMed  Google Scholar 

  25. Clark, P. U. & Pollard, D. Origin of the middle Pleistocene transition by ice sheet erosion of regolith. Paleoceanography 13, 1–9 (1998).

    ADS  Google Scholar 

  26. Muller, R. A. & MacDonald, G. J. F. Glacial cycles and astronomical forcing. Science 277, 215–218 (1997).

    ADS  CAS  Google Scholar 

  27. Shackleton, N. J. The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science 289, 1897–1902 (2000).

    ADS  CAS  PubMed  Google Scholar 

  28. Gallup, C. D., Edwards, R. L. & Johnson, R. G. The timing of high sea levels over the past 200,000 years. Science 263, 796–800 (1994).

    ADS  CAS  PubMed  Google Scholar 

  29. Bard, E., Antonioli, F. & Silenzi, S. Duration and timing of the penultimate interglacial sea level highstand: implications for the astronomical theory of palaeoclimate. Earth Planet. Sci. Lett. 196, 135–146 (2002).

    ADS  CAS  Google Scholar 

  30. Galewsky, J., Silver, E. A., Gallup, C. D., Edwards, R. L. & Potts, D. C., Foredeep tectonics and carbonate platform dynamics in the Huon Gulf, Papua New Guinea. Geology 24, 819–822 (1996).

    ADS  CAS  Google Scholar 

  31. Stirling, C. H., Esat, T. M., Lambeck, K. & McCulloch, M. T. Timing and duration of the Last Interglacial: evidence for a restricted interval of widespread coral reef growth. Earth Planet. Sci. Lett. 160, 745–762 (1998).

    ADS  CAS  Google Scholar 

  32. Rohling, E. J. et al. Magnitudes of the sea-level lowstands of the past 500,000 years. Nature 394, 162–165 (1998).

    ADS  CAS  Google Scholar 

  33. Ferland, M. A., Roy, P. S. & Murray-Wallace, C. V. Glacial lowstand deposits on the outer continental shelf of southeastern Australia. Quat. Res. 44, 294–299 (1995).

    CAS  Google Scholar 

  34. Chappell, J. & Shackleton, N. J. Oxygen isotopes and sea level. Nature 324, 137–140 (1986).

    ADS  CAS  Google Scholar 

  35. Mesolella, K., Matthews, R. K., Broecker, W. S. & Thurber, D. L. The astronomical theory of climate change: Barbados data. J. Geol. 77, 250–274 (1969).

    ADS  CAS  Google Scholar 

  36. Chappell, J. et al. Reconciliation of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records. Earth Planet. Sci. Lett. 141, 227–236 (1996).

    ADS  CAS  Google Scholar 

  37. Esat, T. M., McCulloch, M. T., Chappell, J., Pillans, B. & Omura, A. Rapid fluctuations in sea level recorded at Huon Peninsula during the Penultimate Deglaciation. Science 283, 197–201 (1999).

    CAS  PubMed  Google Scholar 

  38. Yokoyama, Y., Esat, T. M., Lambeck, K. & Fifield, L. K. Last ice age millennial scale climate changes recorded in Huon Peninsula corals. Radiocarbon 42, 383–401 (2000).

    CAS  Google Scholar 

  39. Stein, M. et al. TIMS U-series dating and stable isotopes of the last interglacial event in Papua New Guinea. Geochim. Cosmochim. Acta 57, 2541–2554 (1993).

    ADS  CAS  Google Scholar 

  40. Lambeck, K. & Chappell, J. Sea level change through the last glacial cycle. Science 292, 679–686 (2001).

    ADS  CAS  PubMed  Google Scholar 

  41. Yokoyama, Y., Esat, T. M. & Lambeck, K. Coupled climate and sea-level changes deduced from Huon Peninsula coral terraces of the last ice age. Earth Planet. Sci. Lett. 193, 579–587 (2001).

    ADS  CAS  Google Scholar 

  42. Chappell, J. C. Sea-level changes forced ice breakouts in the Last Glacial cycle: new results from coral terraces. Quat. Sci. Rev. 21, 1229–1240 (2002).

    ADS  Google Scholar 

  43. Imbrie, J. et al. in Milankovitch and Climate (eds Berger, A. et al.) 269–305 (Reidel, Dordrecht, 1984).

    Google Scholar 

  44. Lambeck, K. & Nakada, M. Constraints on the age and duration of the last interglacial period and on sea-level variations. Nature 357, 125–128 (1992).

    ADS  Google Scholar 

  45. Potter, E.-K. et al. Timing and magnitude of oxygen isotope stage 5a and 5c sea level oscillations at Barbados: implications for the melting history of the Laurentide ice sheet during OIS 5 and 6. Eos Trans. AGU 82(47), Fall Meet. Suppl., Abstract PP12A-0467 (2001).

  46. Gallup, C. D., Cheng, H., Taylor, F. W. & Edwards, R. L. Direct determination of the timing of sea level change during termination II. Science 295, 310–313 (2002).

    ADS  CAS  PubMed  Google Scholar 

  47. Winograd, I. J. et al. Continuous 500,000 year climate record from vein calcite in Devils Hole, Nevada. Science 258, 255–260 (1992).

    ADS  CAS  PubMed  Google Scholar 

  48. Henderson, G. M. & Slowey, N. C., Evidence from U-Th dating against northern hemisphere forcing of the penultimate deglaciation. Nature 404, 61–65 (2000).

    ADS  CAS  PubMed  Google Scholar 

  49. Ludwig, K. R. et al. Sea level records at 80ka from tectonically stable platforms: Florida and Bermuda. Geology 24, 211–214 (1996).

    ADS  Google Scholar 

  50. Toscano, M. A. & Lundberg, J. Submerged Late Pleistocene reefs on the tectonically-stable S.E. Florida margin: high-precision geochronology, stratigraphy, resolution of Substage 5a sea-level elevation, and orbital forcing. Quat. Sci. Rev. 18, 753–767 (1999).

    ADS  Google Scholar 

  51. Denton, G. H. & Hughes, T. J. (eds) The Last Great Ice Sheets (Wiley, New York, 1980).

    Google Scholar 

  52. Lundqvist, J. in Glacial Stratigraphy, Engineering Geology and Earth Construction (ed. Kauranne, K.) (Geol. Surv. Finland Special Paper 15) 43–59 (Geol. Surv. Finland, 1992).

    Google Scholar 

  53. Helmens, K. F., Räsänen, M. E., Johansson, P. W., Jungner, H. & Korjonen, K. The last interglacial-glacial cycle in NE Scandinavia: a nearly continuous record from Sokli (Finnish Lapland). Quat. Sci. Rev. 19, 1605–1623 (2000).

    ADS  Google Scholar 

  54. Mangerud, J. Ice sheet limits in Norway and on the Norwegian continental shelf. Quat. Sci. Rev. (submitted).

  55. Svendsen, J. I. et al. Maximum extent of the Eurasian ice sheets in the Barents and Kara Sea region during the Weichselian. Boreas 28, 234–242 (1999).

    Google Scholar 

  56. Clark, P. U. et al. Initiation and development of the Laurentide and Cordilleran ice sheets following the Last Interglaciation, Quat. Sci. Rev. 12, 79–114 (1993).

    ADS  Google Scholar 

  57. Lund, D. C. & Mix, A. C. Millennial-scale deep water oscillations: reflections of the North Atlantic in the deep Pacific from 10 to 60 ka. Paleoceanography 13, 10–19 (1998).

    ADS  Google Scholar 

  58. Bond, G. et al. Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature 360, 245–249 (1992).

    ADS  Google Scholar 

  59. Bond, G. et al. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365,143–147 (1993).

    ADS  Google Scholar 

  60. Kanfoush, S. L. et al. Millennial-scale instability of the Antarctic ice sheet during the last glaciation, Science 288, 1815–1818 (2000).

    ADS  CAS  PubMed  Google Scholar 

  61. Heinrich, H. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the last 130,000 years. Quat. Res. 29, 143–152 (1988).

    Google Scholar 

  62. Chapman, M. R., Shackleton, N. J. & Duplessey, J.-C., Sea surface temperature variability during the last glacial-interglacial cycle assessing the magnitude and pattern of climate change in the North Atlantic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 157, 1–25 (2000).

    Google Scholar 

  63. Broecker, W. S. Massive iceberg discharges as triggers for global climate change. Nature 372, 421–424 (1994).

    ADS  CAS  Google Scholar 

  64. Fawcett, P. J., Agustsdottir, A. M., Alley, R. B. & Shuman, C. A. The Younger Dryas termination and the North Atlantic deep water formation: insights from climate model simulations and Greenland ice cores. Paleoceanography 12, 23–38 (1997).

    ADS  Google Scholar 

  65. Alley, R. B. Icing the North Atlantic. Nature 392, 335–337 (1998).

    ADS  CAS  Google Scholar 

  66. Kitagawa, H. & van der Plicht, J., Atmospheric radiocarbon calibration to 45,000 yr B.P.: late glacial fluctuations and cosmogenic isotope production. Science 279, 1187–1190 (1998).

    ADS  CAS  PubMed  Google Scholar 

  67. Hughen, K. A., Southon, J. R., Lehman, S. J. & Overpeck, J. T. Synchronous radiocarbon and climate shifts during the last deglaciation. Science 290, 1951–1954 (2000).

    ADS  CAS  PubMed  Google Scholar 

  68. Broecker, W. S. & Hemming, S. Climate swings come into focus. Science 294, 2308–2309 (2001).

    CAS  PubMed  Google Scholar 

  69. Dowdeswell, J. A., Elverhøi, A., Andrews, J. T. & Hebbeln, D. Asynchronous deposition of ice-rafted layers in the Nordic seas and North Atlantic Ocean. Nature 400, 348–351 (1999).

    ADS  CAS  Google Scholar 

  70. Shemesh, A., Burckle, L. H. & Hays, J. D. Meltwater input to the Southern Ocean during the Last Glacial Maximum. Science 266, 1542–1544 (1994).

    ADS  CAS  PubMed  Google Scholar 

  71. Bond, G. C. & Lotti, R. Iceberg discharges into the North Atlantic on millennial time scales during the Last Glaciation. Science 267, 1005–1010 (1995).

    ADS  CAS  PubMed  Google Scholar 

  72. Mix, A. C., Bard, E. & Schneider, R. Environmental processes of the ice age land, oceans, glaciers (EPILOG). Quat. Sci. Rev. 20, 627–657 (2001).

    ADS  Google Scholar 

  73. Yokoyama, Y., Lambeck, K., De Deckker, P., Johnston, P. & Fifield, L. K. Timing of the Last Glacial Maximum from observed sea-level minima. Nature 406, 713–716 (2000). [Published correction in Nature, 412, 99 (2001).]

    ADS  CAS  PubMed  Google Scholar 

  74. Milne, G. A., Mitrovica, J. X. & Schrag, D. P. Estimating past continental ice volume from sea-level data. Quat. Sci. Rev. 21, 361–376 (2002).

    ADS  Google Scholar 

  75. Lambeck, K., Yokoyama, Y. & Purcell, A., Into and out of the Last Glacial Maximum: sea-level change during oxygen isotope stages 3 and 2. Quat. Sci. Rev. 21, 343–360 (2002).

    ADS  Google Scholar 

  76. Olsen, L., Sveian, H. & Bergstrøm, B. Rapid adjustments of the western part of the Scandinavian ice sheet during the Mid and Late Weichselian—a new model. Norw. J. Geol. 81, 93–118 (2001).

    CAS  Google Scholar 

  77. Sejrup, H. P. et al. Quaternary glaciations in southern Fennoscandia: evidence from southwestern Norway and the northern North Sea. Quat. Sci. Rev. 19, 667–685 (2000).

    ADS  Google Scholar 

  78. Ukkonen, P., Lunkka, J. P., Jungner, H. & Donner, J. New radiocarbon dates from Finnish mammoths indicating large ice-free areas in Fennoscandia during the Middle Weichselian. J. Quat. Sci. 14, 711–714 (1999).

    Google Scholar 

  79. Tushingham, A. M. & Peltier, W. R. ICE-3G: a new global model of Late Pleistocene deglaciation based upon geophysical predictions of postglacial sea-level change. J. Geophys. Res. 96, 4497–4523 (1991).

    ADS  Google Scholar 

  80. Lambeck, K., Smither, C. & Johnston, P. Sea-level change, glacial rebound and mantle viscosity for northern Europe. Geophys. J. Int. 134, 647–651 (1998).

    ADS  Google Scholar 

  81. Vorren, T. O., Vorren, K.-D., Alm, T., Gullimsen, S. & Løvlie, R. The last deglaciation (20,000–11,000 B.P.) on Andøya, northern Norway. Boreas 17, 41–77 (1988).

    Google Scholar 

  82. Licciardi, J. M., Clark, P. U., Jenson, J. W. & MacAyeal, D. R. Deglaciation of a soft-bed Laurentide ice sheet. Quat. Sci. Rev. 17, 427–448 (1998).

    ADS  Google Scholar 

  83. Miller, G. H. et al. The Goldilocks dilemma: big ice, little ice, or “just-right” ice in the Eastern Canadian Arctic. Quat. Sci. Rev. 21, 33–48 (2002).

    ADS  Google Scholar 

  84. Lambeck, K. Limits on the areal extent of the Barents Sea ice sheet in Late Weichselian time. Palaeogeogr. Palaeoclimatol. Palaeoecol. 12, 41–51 (1996).

    Google Scholar 

  85. Bennike, O., Björck, S. & Lambeck, K. Estimates of South Greenland late-glacial ice limits from a new relative sea level curve. Earth Planet. Sci. Lett. 197, 171–186 (2002).

    ADS  CAS  Google Scholar 

  86. Zwartz D., Bird, M., Stone, J. & Lambeck, K. Holocene sea-level change and ice-sheet history in the Vestfolf Hills, East Antarctica. Earth Planet. Sci. Lett. 155, 131–145 (1998).

    ADS  CAS  Google Scholar 

  87. CLIMAP Project Members. The surface of the ice age Earth. Science 191, 1131–1137 (1976).

  88. Lambeck, K., Yokoyama, Y., Johnston, P. & Purcell, A. Global ice volumes at the Last Glacial Maximum and early Late glacial. Earth Planet. Sci. Lett. 181, 513–527 (2000).

    ADS  CAS  Google Scholar 

  89. Elliot, M. et al. Millennial-scale iceberg discharges in the Irminger Basin during the last glacial period: relationship with the Heinrich events and environmental settings. Paleoceanography 13, 433–446 (1998).

    ADS  Google Scholar 

  90. Shemesh, A., Burckle, L. H. & Hays, J. D. Meltwater input to the Southern Ocean during the Last Glacial Maximum. Science 266, 1542–1544 (1994).

    ADS  CAS  PubMed  Google Scholar 

  91. Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).

    ADS  CAS  Google Scholar 

  92. Stoffers, P. & Ross, D. A. Late Pleistocene and Holocene sedimentation in the Persian Gulf-Gulf of Oman. Sedim. Geol. 23, 181–208 (1979).

    ADS  CAS  Google Scholar 

  93. Fairbanks, R. G. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637–642 (1989).

    ADS  Google Scholar 

  94. Bard, E., Hamelin, B. & Fairbanks, R. G. U-Th ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130,000 years. Nature 346, 456–458 (1990).

    ADS  CAS  Google Scholar 

  95. Bard, E. et al. Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. Nature 382, 241–244 (1996).

    ADS  CAS  Google Scholar 

  96. Hanebuth, T., Stattegger, K. & Grootes, P. M. Rapid flooding of the Sunda Shelf: a late-glacial sea-level record. Science 288, 1033–1035 (2000).

    ADS  CAS  PubMed  Google Scholar 

  97. Clark, P. U. et al. Origin of the first global meltwater pulse following the last glacial maximum. Paleoceanography 11, 563–577 (1996).

    ADS  Google Scholar 

  98. Clark, P. U., Mitrovica, J. X., Milne, G. A. & Tamisiea, M. E. Sea-level fingerprinting as a direct test for the source of global meltwater pulse IA. Science 295, 2438–2441 (2002).

    ADS  CAS  PubMed  Google Scholar 

  99. Johnson, R. G. Major northern hemisphere deglaciation caused by a moisture deficit 140 ka. Geology 19, 686–689 (1991).

    ADS  Google Scholar 

  100. Shaffer, J. A., Cerveny, R. S. & Dom, R. I. Radiation windows as indicators of an astronomical influence on the Devil's Hole chronology. Geology 24, 1017–1020 (1996).

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Australian National University and by the Swedish Research Council. We thank S. Björck for constructive comments and M. E. Raymo and G. H. Haug for providing the data sets for Fig. 1.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lambeck, K., Esat, T. & Potter, EK. Links between climate and sea levels for the past three million years. Nature 419, 199–206 (2002). https://doi.org/10.1038/nature01089

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01089

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing