Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam

Article metrics

Abstract

Optical tweezers1 are commonly used for manipulating microscopic particles, with applications in cell manipulation2, colloid research3,4,5, manipulation of micromachines6 and studies of the properties of light beams7. Such tweezers work by the transfer of momentum from a tightly focused laser to the particle, which refracts and scatters the light and distorts the profile of the beam. The forces produced by this process cause the particle to be trapped near the beam focus. Conventional tweezers use gaussian light beams, which cannot trap particles in multiple locations more than a few micrometres apart in the axial direction, because of beam distortion by the particle and subsequent strong divergence from the focal plane. Bessel beams8,9, however, do not diverge and, furthermore, if part of the beam is obstructed or distorted the beam reconstructs itself after a characteristic propagation distance10. Here we show how this reconstructive property may be utilized within optical tweezers to trap particles in multiple, spatially separated sample cells with a single beam. Owing to the diffractionless nature of the Bessel beam, secondary trapped particles can reside in a second sample cell far removed (3 mm) from the first cell. Such tweezers could be used for the simultaneous study of identically prepared ensembles of colloids and biological matter, and potentially offer enhanced control of ‘lab-on-a-chip’ and optically driven microstructures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Beam propagation simulation.
Figure 2: Inverted tweezers experimental set-up.
Figure 3: Alignment of glass rods and chromosomes.
Figure 4: Arrays of 1 µm spheres.

References

  1. 1

    Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986)

  2. 2

    Smith, S. B., Cui, Y. & Bustamante, C. Overstretching B-DNA: The elastic response of individual double strained and single stranded DNA molecules. Science 271, 795–799 (1996)

  3. 3

    Crocker, J. C. & Grier, D. G. Methods of digital video microscopy for collodial studies. J. Colloid Interf. Sci. 179, 298–310 (1996)

  4. 4

    Crocker, J. C., Matteo, J. A., Dinsmore, A. D. & Yodh, A. G. Entropic attraction and repulsion in binary colloids probed with a line optical tweezer. Phys. Rev. Lett. 82, 4352–4355 (1999)

  5. 5

    Larsen, A. E. & Grier, D. G. Like charge attractions in metastable colloidal crystallites. Nature 385, 230–233 (1997)

  6. 6

    Friese, M. E. J., Rubinsztein-Dunlop, H., Gold, J., Hagberg, P. & Hanstorp, D. Optically driven micromachine elements. Appl. Phys. Lett. 78, 547–549 (2001)

  7. 7

    Volke-Sepulveda, K., Garcés-Chávez, V., Chávez-Cerda, S., Arlt, J. & Dholakia, K. Orbital angular momentum of a high-order Bessel light beam. J. Opt. B 4, 582–589 (2002)

  8. 8

    Durnin, J., Miceli, J. J. Jr & Eberly, J. H. Diffraction-free beams. Phys. Rev. Lett. 58, 1499–1501 (1987)

  9. 9

    McQueen, C. A., Arlt, J. & Dholakia, K. An experiment to study a “nondiffracting” light beam. Am. J. Phys. 67, 912–915 (1999)

  10. 10

    Bouchal, Z., Wagner, J. & Chlup, M. Self-reconstruction of a distorted nondiffracting beam. Opt. Commun. 151, 207–211 (1998)

  11. 11

    Durnin, J. Exact solutions for nondiffracting beams. I. The scalar theory. J. Opt. Soc. Am. A 4, 651–654 (1987)

  12. 12

    Herman, R. M. & Wiggins, T. A. Production and uses of diffractionless beams. J. Opt. Soc. Am. A 8, 932–942 (1991)

  13. 13

    MacDonald, R. P., Boothroyd, S. A., Okamato, T., Chrostowski, J. & Syrett, B. A. Interboard optical data distribution by Bessel beam shadowing. Opt. Commun. 122, 169–177 (1996)

  14. 14

    Chávez-Cerda, S. et al. Holographic generation and orbital angular momentum of high-order Mathieu beams. J. Opt. B 4, S52–S57 (2002)

  15. 15

    Curtis, J. E., Koss, B. A. & Grier, D. G. Dynamic holographic optical tweezers. Opt. Commun. 207, 169–175 (2002)

  16. 16

    Arlt, J., Garcés-Chávez, V., Sibbett, W. & Dholakia, K. Optical micro-manipulation using a Bessel light beam. Opt. Commun. 197, 239–245 (2001)

  17. 17

    Friese, M. E. J., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Alignment or spinning of laser-trapped microscopic waveplates. Nature 394, 348–350 (1998)

  18. 18

    Paterson, L. et al. Controlled rotation of optically trapped microscopic particles. Science 292, 912–914 (2001)

  19. 19

    MacDonald, M. P. et al. Creation and manipulation of three-dimensional optically trapped structures. Science 296, 1101–1103 (2002)

  20. 20

    Korda, P., Spalding, G. C., Dufresne, E. R. & Grier, D. G. Nanofabrication with holographic optical tweezers. Rev. Sci. Instrum. 73, 1956–1957 (2002)

Download references

Acknowledgements

We thank G. Spalding for discussions. This work was supported by the Leverhulme Trust, the UK Engineering and Physical Sciences Research Council and the Medical Research Council.

Author information

Correspondence to K. Dholakia.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Garcés-Chávez, V., McGloin, D., Melville, H. et al. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature 419, 145–147 (2002) doi:10.1038/nature01007

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.