Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Scale dependence of bubble creation mechanisms in breaking waves


Breaking ocean waves entrain air bubbles that enhance air–sea gas flux, produce aerosols, generate ambient noise and scavenge biological surfactants. The size distribution of the entrained bubbles is the most important factor in controlling these processes, but little is known about bubble properties and formation mechanisms inside whitecaps. We have measured bubble size distributions inside breaking waves in the laboratory and in the open ocean, and provide a quantitative description of bubble formation mechanisms in the laboratory. We find two distinct mechanisms controlling the size distribution, depending on bubble size. For bubbles larger than about 1 mm, turbulent fragmentation determines bubble size distribution, resulting in a bubble density proportional to the bubble radius to the power of -10/3. Smaller bubbles are created by jet and drop impact on the wave face, with a -3/2 power-law scaling. The length scale separating these processes is the scale where turbulent fragmentation ceases, also known as the Hinze scale. Our results will have important implications for the study of air–sea gas transfer.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Logarithmic timeline of bubble plume evolution.
Figure 2: Three high-speed video images of a breaking wave crest taken during the acoustically active phase of the wave crest.
Figure 3: Spectrogram of wave noise calculated from an average of 17 breaking events.
Figure 4: The average bubble size spectrum estimated from 14 breaking events during their acoustic phase.
Figure 5: Some bubble fragmentation metrics.
Figure 6: Oceanic bubble size distributions observed 30 cm below whitecaps during the plume quiescent phase.


  1. Lamarre, E. & Melville, W. K. Air entrainment and dissipation in breaking waves. Nature 351, 469–472 (1991)

    ADS  Article  Google Scholar 

  2. Wallace, D. W. R. & Wirick, C. D. Large air–sea fluxes associated with breaking waves. Nature 356, 694–696 (1992)

    ADS  CAS  Article  Google Scholar 

  3. Farmer, D. M., McNeil, C. L. & Johnson, B. D. Evidence for the importance of bubbles in increasing air–sea gas flux. Nature 361, 620–623 (1993)

    ADS  Article  Google Scholar 

  4. Melville, W. K. The role of surface-wave breaking in air-sea interaction. Annu. Rev. Fluid. Mech. 28, 279–321 (1996)

    ADS  MathSciNet  Article  Google Scholar 

  5. Thorpe, S. A. The effect of Langmuir circulation on the distribution of submerged bubbles caused by breaking wind waves. J. Fluid. Mech. 142, 151–170 (1984)

    ADS  Article  Google Scholar 

  6. Medwin, H. & Breitz, N. D. Ambient and transient bubble spectral densities in quiescent seas and under spilling breakers. J. Geophys. Res. 94, 12751–12759 (1989)

    ADS  Article  Google Scholar 

  7. Hwang, P. A., Hsu, Y. L. & Wu, J. Temperature effects on generation and entrainment of bubbles induced by a water jet. J. Phys. Oceanogr. 20, 19–28 (1990)

    ADS  Article  Google Scholar 

  8. Monahan, E. C. & Lu, M. Acoustically relevant bubble assemblages and their dependence on meteorological parameters. IEEE J. Ocean. Eng. 15, 340–349 (1990)

    ADS  Article  Google Scholar 

  9. Thorpe, S. A. Bubble clouds and the dynamics of the upper ocean. Q. J. R. Meteorol. Soc. 118, 1–22 (1992)

    ADS  MathSciNet  Article  Google Scholar 

  10. Thorpe, S. A., Bowyer, P. & Woolf, D. K. Some factors affecting the size distributions of oceanic bubbles. J. Phys. Oceanogr. 22, 382–389 (1992)

    ADS  Article  Google Scholar 

  11. Farmer, D. & Li, M. Patterns of bubble clouds organized by Langmuir circulation. J. Phys. Oceanogr. 25, 1426–1440 (1995)

    ADS  Article  Google Scholar 

  12. Bezzabotnov, V. S., Bortkovskiy, R. S. & Timanovskiy, D. F. On the structure of the two-phase medium generated at wind-wave breaking. Izvest. Atmos. Ocean. Phys. 22, 922–928 (1986)

    Google Scholar 

  13. Deane, G. B. & Stokes, M. D. Air entrainment processes and bubble size distributions in the surf zone. J. Phys. Oceanogr. 29, 1393–1403 (1998)

    ADS  Article  Google Scholar 

  14. Stokes, M. D., Deane, G. B., Vagle, S. & Farmer, D. in Gas Transfer at Water Surfaces Geophysical Monographs 127 (eds Donelan, M. A., Drennan, W. M., Saltzman, E. S. & Wanninkhof, R.) 278–285 (American Geophysical Union, Washington, DC, 2002)

    Google Scholar 

  15. de Leeuw, G. D. & Cohen, L. H. in Gas Transfer at Water Surfaces Geophysical Monographs 127 (eds Donelan, M. A., Drennan, W. M., Saltzman, E. S. & Wanninkhof, R.) 271–277, (American Geophysical Union, Washington, DC, 2002)

    Google Scholar 

  16. Longuet-Higgins, M. S. The crushing of air cavities in a liquid. Proc. R. Soc. Lond. A 439, 611–626 (1992)

    ADS  Article  Google Scholar 

  17. Baldy, S. A generation-dispersion model of ambient and transient bubbles in the close vicinity of breaking waves. J. Geophys. Res. 98, 18277–18293 (1993)

    ADS  Article  Google Scholar 

  18. Garrett, C., Li, M. & Farmer, D. The connection between bubble size spectra and energy dissipation rates in the upper ocean. J. Phys. Oceanogr. 30, 2163–2171 (2000)

    ADS  Article  Google Scholar 

  19. Van De Sande, E. & Smith, J. M. Jet break-up and air entrainment by low velocity turbulent water jets. Chem. Eng. Sci. 31, 219–224 (1976)

    CAS  Article  Google Scholar 

  20. Bonetto, F. & Lahey, R. T. Jr An experimental study on air carryunder due to a plunging jet. Int. J. Multiphase Flow 19, 281–294 (1993)

    CAS  Article  Google Scholar 

  21. Pumphrey, H. C. & Elmore, P. A. The entrainment of bubbles by drop impacts. J. Fluid Mech. 220, 539–567 (1990)

    ADS  CAS  Article  Google Scholar 

  22. Koga, M. Bubble entrainment in breaking wind waves. Tellus 34, 481–489 (1982)

    ADS  Article  Google Scholar 

  23. Loewen, M. R., O'Dor, M. A. & Skafel, M. G. Bubbles entrained by mechanically generated breaking waves. J. Geophys. Res. 101, 20759–20820 (1996)

    ADS  Article  Google Scholar 

  24. Bonmarin, P. Geometric properties of deep water breaking waves. J. Fluid Mech. 209, 405–433 (1989)

    ADS  Article  Google Scholar 

  25. Minnaert, M. On musical air bubbles and the sounds of running water. Phil. Mag. 16, 235–248 (1933)

    Article  Google Scholar 

  26. Leighton, T. G. The Acoustic Bubble (Academic, San Diego, 1994)

    Google Scholar 

  27. Stokes, M. D. & Deane, G. B. A new optical instrument for the study of breaking waves at high void fractions within breaking waves. IEEE J. Ocean. Eng. 24, 300–311 (1999)

    ADS  Article  Google Scholar 

  28. Kolomogorov, A. N. O droblenii kapel' v turbulentnom potoke. Dokl. Acad. Nauk USSR 66, 825–828 (1949)

    Google Scholar 

  29. Hinze, J. O. Fundamentals of the hydrodynamic mechanism of slitting in dispersion processes. J. Am. Inst. Chem. Eng. 1, 289–295 (1955)

    CAS  Article  Google Scholar 

  30. Lewis, D. A. & Davidson, J. F. Bubble splitting in shear flow. Trans. Inst. Chem. Eng. 60, 283–291 (1982)

    CAS  Google Scholar 

  31. Martínez-Bazán, C., Montañés, J. L. & Lasheras, J. C. On the breakup of an air bubble injected into a fully developed turbulent flow. I. Breakup frequency. J. Fluid Mech. 401, 157–182 (1999)

    ADS  Article  Google Scholar 

  32. Fan, L.-S. & Tsuchiya, K. Bubble Wake Dynamics in Liquids and Liquid-Solid Suspensions (Butterworth-Heinemann, Boston, 1990)

    Google Scholar 

  33. Clay, P. H. The mechanism of emulsion formation in turbulent flow: theoretical part and discussion. Proc. R. Acad. Sci. 43, 979–990 (1940)

    Google Scholar 

  34. Loewen, M. R. & Melville, W. K. Microwave backscatter and acoustic radiation from breaking waves. J. Fluid Mech. 224, 601–623 (1991)

    ADS  Article  Google Scholar 

  35. Deane, G. B. Sound generation and air entrainment by breaking waves in the surf zone. J. Acoust. Soc. Am. 102, 2671–2689 (1997)

    ADS  Article  Google Scholar 

  36. Loewen, M. R., O'Dor, M. A. & Skafel, M. G. in Third Int. Symp. on Air-Water Gas Transfer (eds Jahne, B. & Monahan, E. C.) 337–349 (AEON Verlag & Studio, Hanau, Germany, 1995)

    Google Scholar 

  37. Loewen, M. R. & Melville, W. K. An experimental investigation of the collective oscillations of bubble plumes entrained by breaking waves. J. Acoust. Soc. Am. 95, 1329–1343 (1992)

    ADS  Article  Google Scholar 

Download references


We thank G. Devine and J. Uyloan for assistance in laboratory data analysis, and the crew of RP FLIP during oceanic deployments. We also thank D. Farmer, M. Li and C. Garrett for discussions. This work was supported by the National Science Foundation and the Office of Naval Research.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Grant B. Deane.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Deane, G., Stokes, M. Scale dependence of bubble creation mechanisms in breaking waves. Nature 418, 839–844 (2002).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing