Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Lateralization of magnetic compass orientation in a migratory bird

Abstract

Lateralization of brain functions, once believed to be a human characteristic, has now been found to be widespread among vertebrates1,2,3. In birds, asymmetries of visual functions are well studied, with each hemisphere being specialized for different tasks4,5,6,7,8. Here we report lateralized functions of the birds' visual system associated with magnetoperception, resulting in an extreme asymmetry of sensing the direction of the magnetic field. We found that captive migrants tested in cages with the magnetic field as the only available orientation cue were well oriented in their appropriate migratory direction when using their right eye only, but failed to show a significant directional preference when using their left eye. This implies that magnetoreception for compass orientation, assumed to take place in the eyes alongside the visual processes9,10,11, is strongly lateralized, with a marked dominance of the right eye/left brain hemisphere.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: A robin ready for monocular testing.
Figure 2: Orientation behaviour under monochromatic green light with the magnetic field as the only cue.

References

  1. Vallortigara, G. Comparative neuropsychology of the dual brain: a stroll through animals' left and right perceptual worlds. Brain Lang. 73, 189–219 (2000)

    Article  CAS  Google Scholar 

  2. Rogers, L. & Andrew, R. J. (eds) Comparative Vertebrate Lateralization (Cambridge Univ. Press, Cambridge, 2002)

  3. Hunt, G. R., Corballis, M. C. & Gray, R. D. Laterality in tool manufacture by crows. Nature 414, 707 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Clayton, N. Lateralization and unilateral transfer of spatial memory in marsh tits. J. Comp. Physiol. A 171, 799–806 (1993)

    Article  Google Scholar 

  5. Rogers, L. Behavioral, structural and neurochemical asymmetries in the avian brain: a model system for studying visual development and processing. Neurosci. Biobehav. Rev. 20, 487–503 (1996)

    Article  CAS  Google Scholar 

  6. Güntürkün, O. Avian visual lateralization: a review. NeuroReport 8, 3–11 (1997)

    Google Scholar 

  7. Vallortigara, G., Regolin, L., Bortolomiol, G. & Tommasi, L. Lateral asymmetries due to preferences in eye use during visual discrimination learning in chicks. Behav. Brain Res. 74, 135–143 (1996)

    Article  CAS  Google Scholar 

  8. Tommasi, L. & Vallortigara, G. Encoding of geometric and landmark information in the left and right hemispheres of the avian brain. Behav. Neurosci. 115, 602–613 (2001)

    Article  CAS  Google Scholar 

  9. Ritz, T., Adem, S. & Schulten, K. A model for vision-based magnetoreception in birds. Biophys. J. 78, 707–718 (2000)

    Article  CAS  Google Scholar 

  10. Wiltschko, W., Munro, U., Ford, H. & Wiltschko, R. Red light disrupts magnetic orientation of migratory birds. Nature 364, 525–527 (1993)

    Article  ADS  Google Scholar 

  11. Wiltschko, W. & Wiltschko, R. Light-dependent magnetoreception in birds: the behaviour of European robins, Erithacus rubecula, under monochromatic light of various wavelengths and intensities. J. Exp. Biol. 204, 3295–3302 (2001)

    CAS  PubMed  MATH  Google Scholar 

  12. Prior, H. & Güntürkün, O. Parallel working memory for spatial location and food-related object cues in foraging pigeons: binocular and lateralised monocular performance. Learn. Memory 8, 44–51 (2001)

    Article  CAS  Google Scholar 

  13. Ulrich, C. I. et al. Left-hemisperic superiority for visuospatial orientation in homing pigeons. Behav. Brain Res. 104, 169–178 (1999)

    Article  CAS  Google Scholar 

  14. Prior, H., Wiltschko, R., Stapput, K., Güntürkün, O. & Wiltschko, W. Orientation and Navigation—Birds, Humans and other Animals 25-1–25-8 (Royal Institute of Navigation, Oxford, 2001)

    Google Scholar 

  15. Wiltschko, W., Gesson, M. & Wiltschko, R. Magnetic compass orientation of European Robins under 565 nm green light. Naturwissenschaften 88, 387–390 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Wiltschko, W. & Wiltschko, R. Magnetic compass of European Robins. Science 176, 42–64 (1972)

    Article  ADS  Google Scholar 

  17. Wiltschko, R. & Wiltschko, W. Magnetic Orientation in Animals (Springer, Berlin, 1995)

    Book  Google Scholar 

  18. Semm, P., Nohr, D., Demaine, C. & Wiltschko, W. Neural basis of the magnetic compass: interaction of visual, magnetic and vestibular inputs in the pigeon's brain. J. Comp. Physiol. A 155, 283–288 (1984)

    Article  Google Scholar 

  19. Semm, P. & Demaine, C. Neurophysiological properties of magnetic cells in the pigeon's visual system. J. Comp. Physiol. A 159, 619–625 (1986)

    Article  CAS  Google Scholar 

  20. Beason, R. C. & Semm, P. Magnetic responses of the trigeminal nerve system of the Bobolink (Dolichonyx oryzivorus). Neurosci. Lett. 80, 229–234 (1987)

    Article  CAS  Google Scholar 

  21. Hellmann, B. & Güntürkün, O. Structural organization of parallel information processing within the tectofugal visual system of the pigeon. J. Comp. Neurol. 429, 94–112 (2001)

    Article  CAS  Google Scholar 

  22. Diekamp, B., Hellmann, B., Troje, N. F., Wang, S. R. & Güntürkün, O. Electrophysiological and anatomical evidence for a direct projection from the nucleus of the basal optic root to the nucleus rotundus in pigeons. Neurosci. Lett. 305, 103–106 (2001)

    Article  CAS  Google Scholar 

  23. Mai, J. K. & Semm, P. Pattern of brain glucose utilization following magnetic stimulation. J. Hirnforsch. 31, 331–336 (1990)

    CAS  PubMed  Google Scholar 

  24. Güntürkün, O. & Hahmann, U. Functional subdivisions of the ascending visual pathways in the pigeon. Behav. Brain Res. 98, 193–201 (1999)

    Article  Google Scholar 

  25. Batschelet, E. Circular Statistics in Biology (Academic, London, 1981)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Deutsche Forschungsgemeinschaft. We thank K. Dutine, F. Eich, F. Schmidt and A. Wittekindt for their help with conducting the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Wiltschko.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wiltschko, W., Traudt, J., Güntürkün, O. et al. Lateralization of magnetic compass orientation in a migratory bird. Nature 419, 467–470 (2002). https://doi.org/10.1038/nature00958

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00958

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing