Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Growth of early continental crust controlled by melting of amphibolite in subduction zones

Abstract

It is thought that the first continental crust formed by melting of either eclogite or amphibolite, either at subduction zones1 or on the underside of thick oceanic crust2. However, the observed compositions of early crustal rocks and experimental studies have been unable to distinguish between these possibilities3,4,5. Here we show a clear contrast in trace-element ratios of melts derived from amphibolites and those from eclogites. Partial melting of low-magnesium amphibolite can explain the low niobium/tantalum and high zirconium/samarium ratios in melts, as required for the early continental crust, whereas the melting of eclogite cannot. This indicates that the earliest continental crust formed by melting of amphibolites in subduction-zone environments and not by the melting of eclogite or magnesium-rich amphibolites in the lower part of thick oceanic crust. Moreover, the low niobium/tantalum ratio seen in subduction-zone igneous rocks of all ages is evidence that the melting of rutile-eclogite has never been a volumetrically important process.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Nb/Ta ratios versus Zr/Sm ratios of natural rocks, compared to results of modelled melting of eclogites and amphibolites.
Figure 2: Trace-element ratios in amphiboles as a function of Mg# (= 100 Mg/(Mg + Fe)).
Figure 3: Modelling of Sr concentrations in melts of amphibolite and eclogite.

References

  1. Drummond, M. S. & Defant, M. J. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons. J. Geophys. Res. 95, 21503–21521 (1990)

    ADS  Article  Google Scholar 

  2. Kröner, A. Evolution of the Archean continental crust. Annu. Rev. Earth Planet. Sci. 13, 49–74 (1985)

    ADS  Article  Google Scholar 

  3. Martin, H. in Archean Crustal Evolution (ed. Condie, K. C.) 205–259 (Elsevier, Amsterdam, 1994)

    Book  Google Scholar 

  4. Rapp, R. P., Watson, E. B. & Miller, C. F. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambr. Res. 51, 1–25 (1991)

    ADS  CAS  Article  Google Scholar 

  5. Wolf, M. B. & Wyllie, P. J. Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time. Contrib. Mineral. Petrol. 115, 369–383 (1994)

    ADS  CAS  Article  Google Scholar 

  6. Martin, H. Adakitic magmas: modern analogues of Archean granitoids. Lithos 46, 411–429 (1998)

    ADS  Article  Google Scholar 

  7. Karsten, J. L., Klein, E. M. & Sherman, S. B. Subduction zone geochemical characteristics in ocean ridge basalts from the southern Chile ridge: implications of modern ridge subduction systems for the Archean. Lithos 37, 143–161 (1996)

    ADS  CAS  Article  Google Scholar 

  8. Saunders, A. D., Tarney, J., Kerr, A. C. & Kent, R. W. The formation and fate of large oceanic igneous provinces. Lithos 37, 81–95 (1996)

    ADS  CAS  Article  Google Scholar 

  9. Arndt, N. T. et al. Were komatiites wet? Geology 26, 739–742 (1998)

    ADS  CAS  Article  Google Scholar 

  10. Bickle, M. J., Nisbet, E. G. & Martin, A. Archean greenstone belts are not oceanic crust. J. Geol. 102, 121–138 (1994)

    ADS  Article  Google Scholar 

  11. Bottazzi, P. et al. Distinct site preferences for heavy and light rare-earth elements and the prediction of Amph/LDREE . Contrib. Mineral. Petrol. 137, 36–45 (1999)

    ADS  CAS  Article  Google Scholar 

  12. Tiepolo, M. et al. Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: crystal-chemical constraints and implications for natural systems. Earth Planet. Sci. Lett. 176, 185–201 (2000)

    ADS  CAS  Article  Google Scholar 

  13. Tiepolo, M., Bottazzi, P., Foley, S. F., Oberti, R. & Zanetti, A. Fractionation of Nb and Ta from Zr and Hf at mantle depths: the role of titanian-pargasite and kaersutite. J. Petrol. 42, 221–232 (2001)

    ADS  CAS  Article  Google Scholar 

  14. Barth, M. G., Foley, S. F. & Horn, I. Partial melting in Archean subduction zones: constraints from experimentally determined trace-element partition coefficients between eclogitic minerals and tonalitic melts under upper mantle conditions. Precambr. Res. 113, 323–340 (2002)

    ADS  CAS  Article  Google Scholar 

  15. Foley, S. F., Barth, M. G. & Jenner, G. A. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochim. Cosmochim. Acta 64, 933–938 (2000)

    ADS  CAS  Article  Google Scholar 

  16. Kennedy, A. K., Lofgren, G. E. & Wasserburg, G. J. An experimental study of trace element partitioning between olivine, orthopyroxene and melt in chondrules: equilibrium values and kinetic effects. Earth Planet. Sci. Lett. 115, 177–195 (1993)

    ADS  CAS  Article  Google Scholar 

  17. Eggins, S. M., Rudnick, R. L. & McDonough, W. F. The composition of peridotites and their minerals: a laser-ablation ICP-MS study. Earth Planet. Sci. Lett. 154, 53–71 (1998)

    ADS  CAS  Article  Google Scholar 

  18. Bindemann, I. N., Davis, A. M. & Drake, M. J. Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements. Geochim. Cosmochim. Acta 62, 1175–1193 (1998)

    ADS  Article  Google Scholar 

  19. Blundy, J. D. & Wood, B. J. Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions. Geochim. Cosmochim. Acta 55, 193–209 (1991)

    ADS  CAS  Article  Google Scholar 

  20. Dunn, T. & Sen, C. Mineral/matrix partition coefficients for orthopyroxene, plagioclase, and olivine in basaltic to andesitic systems: a combined analytical and experimental study. Geochim. Cosmochim. Acta 58, 717–733 (1994)

    ADS  CAS  Article  Google Scholar 

  21. Green, T. H. & Pearson, N. J. An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure and temperature. Geochim. Cosmochim. Acta 51, 55–62 (1987)

    ADS  CAS  Article  Google Scholar 

  22. Jenner, G. A. et al. Determination of partition coefficients for trace elements in high-pressure-temperature experimental run products by laser ablation microprobe - inductively coupled mass spectrometry (LAM-ICP-MS). Geochim. Cosmochim. Acta 57, 5099–5103 (1993)

    ADS  CAS  Article  Google Scholar 

  23. Klemme, S., Blundy, J. D. & Wood, B. J. Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochim. Cosmochim. Acta (in the press)

  24. Jacob, D. E. & Foley, S. F. Evidence for Archean oceanic crust with low high field strength element signature from diamondiferous eclogite xenoliths. Lithos 48, 317–336 (1999)

    ADS  CAS  Article  Google Scholar 

  25. Rudnick, R. L., Barth, M., Horn, I. & McDonough, W. F. Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle. Science 287, 278–281 (2000)

    ADS  CAS  Article  Google Scholar 

  26. Stolz, A. J., Jochum, K. P., Spettel, B. & Hofmann, A. W. Fluid- and melt-related enrichment in the subarc mantle: evidence from Nb/Ta variations in island arc basalts. Geology 24, 587–590 (1996)

    ADS  CAS  Article  Google Scholar 

  27. Panjasawatwong, Y., Danyushevsky, L. V., Crawford, A. J. & Harris, K. L. An experimental study of the effects of melt composition on plagioclase-melt equilibria at 5 and 10 kbar: implications for the origin of magmatic high-An plagioclase. Contrib. Mineral. Petrol. 118, 420–432 (1995)

    ADS  CAS  Article  Google Scholar 

  28. Ionov, D. A. & Hofmann, A. W. Nb-Ta-rich mantle amphiboles and micas: implications for subduction-related metasomatic trace element fractionations. Earth Planet. Sci. Lett. 131, 341–356 (1995)

    ADS  CAS  Article  Google Scholar 

  29. Scambelluri, M. et al. Incompatible element-rich fluids released by antigorite breakdown in deeply subducted mantle. Earth Planet. Sci. Lett. 192, 457–470 (2001)

    ADS  CAS  Article  Google Scholar 

  30. Rollinson, H. R. Petrology and geochemistry of metamorphosed komatiites and basalts from the Sula Mountains greenstone belt Sierra Leone. Contrib. Mineral. Petrol. 134, 86–101 (1999)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

Discussions with R. Oberti, M.G. Barth and D.E. Jacob helped to shape the findings reported here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Foley.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Foley, S., Tiepolo, M. & Vannucci, R. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417, 837–840 (2002). https://doi.org/10.1038/nature00799

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00799

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing