Letter | Published:

Origin of GABAergic neurons in the human neocortex

Naturevolume 417pages645649 (2002) | Download Citation

Subjects

Abstract

The mammalian neocortex contains two major classes of neurons, projection and local circuit neurons1,2,3,4. Projection neurons contain the excitatory neurotransmitter glutamate, while local circuit neurons are inhibitory, containing GABA2,4. The complex function of neocortical circuitry depends on the number and diversity of GABAergic (γ-aminobutyric-acid-releasing) local circuit neurons1,2,3. Using retroviral labelling in organotypic slice cultures of the embryonic human forebrain, we demonstrate the existence of two distinct lineages of neocortical GABAergic neurons. One lineage expresses Dlx1/2 and Mash1 transcription factors, represents 65% of neocortical GABAergic neurons in humans, and originates from Mash1-expressing progenitors of the neocortical ventricular and subventricular zone of the dorsal forebrain. The second lineage, characterized by the expression of Dlx1/2 but not Mash1, forms around 35% of the GABAergic neurons and originates from the ganglionic eminence of the ventral forebrain. We suggest that modifications in the expression pattern of transcription factors in the forebrain may underlie species-specific programmes for the generation of neocortical local circuit neurons5,6,7,8,9,10,11 and that distinct lineages of cortical interneurons may be differentially affected in genetic and acquired diseases of the human brain.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Ramon y Cajal, S. R. Histologie du Système Nerveux de l'Homme et des Vertébrés (Maloine, Paris, 1911)

  2. 2

    Rakic, P. Local circuit neurons. Neurosci. Res. Prog. Bull. 13, 1–399 (1975)

  3. 3

    Gupta, A., Wang, Y. & Markram, H. Organizing principle for diversity of GABAergic interneurons and synapses in the neocortex. Science 287, 273–278 (2000)

  4. 4

    Fairen, A., DeFelipe, J. & Regidor, J. in Cellular Components of the Cerebral Cortex (eds Peters, A. & Jones, E. G.) 201–253 (Plenum, New York, 1984)

  5. 5

    Marin, O., Yaron, A., Bagri, A., Tessier-Lavigne, M. & Rubenstein, J. L. R. Sorting of striatal and cortical interneurons regulated by semaphorin-neuropilin interactions. Science 293, 872–875 (2001)

  6. 6

    Tan, S. S. et al. Separate progenitors for radial and tangential cell dispersion during development of the cerebral neocortex. Neuron 21, 295–304 (1998)

  7. 7

    Ware, M. L., Tavazoie, S. F., Reid, C. B. & Walsh, C. A. Coexistence of widespread clones and large radial clones in early embryonic ferret cortex. Cereb. Cortex. 9, 636–645 (1999)

  8. 8

    de Carlos, J. A., López-Mascaraque, L. & Valverde, F. Dynamics of cell migration from the lateral ganglionic eminence in the rat. J. Neurosci. 16, 6146–6156 (1996)

  9. 9

    Powel, E. M., Mara, W. M. & Levitt, P. Hepatocyte growth factor/scatter factor is mitogen for interneuron migrating from the ventral to dorsal telencephaon. Neuron 30, 1–20 (2001)

  10. 10

    Anderson, S., Mione, M., Yun, K. & Rubenstein, J. L. R. Differential origins of neocortical projection and local circuit neurons: Role of Dlx genes in neocortical interneuronogenesis. Cereb. Cortex 9, 646–654 (1999)

  11. 11

    Lavdas, A. A., Grigoriou, M., Pachnis, V. & Parnavelas, J. G. The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J. Neurosci. 19, 7881–7888 (1999)

  12. 12

    Rakic, P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145, 61–84 (1972)

  13. 13

    Luskin, M. B., Pearlman, A. L. & Sanes, J. R. Cell lineage in the cerebral cortex of the mouse studied in vivo and in vitro with recombinant retrovirus. Neuron 1, 635–647 (1988)

  14. 14

    Kornack, D. R. & Rakic, P. Radial and horizontal deployment of clonally related cells in the primate neocortex: Relationship to distinct mitotic lineages. Neuron 15, 311–321 (1995)

  15. 15

    Neyt, C., Welch, M., Langston, A., Kohtz, J. & Fishell, G. A short-range signal restricts cell movement between telencephalic proliferative zones. J. Neurosci. 17, 9194–9203 (1997)

  16. 16

    O'Rourke, N. A., Chenn, A. & McConnell, S. K. Postmitotic neurons migrate tangentially in the cortical ventricular zone. Development 124, 997–1005 (1997)

  17. 17

    He, W., Ingraham, C., Rising, L., Goderie, S. & Temple, S. Multipotent stem cells from the mouse basal forebrain contribute GABAergic neurons and oligodendrocytes to the cerebral cortex during embryogenesis. J. Neurosci. 21, 8854–8862 (2001)

  18. 18

    Casarosa, S., Fode, C. & Guillemot, F. Mash1 regulates neurogenesis in the ventral telencephalon. Development 126, 525–534 (1999)

  19. 19

    Horton, S., Meredith, A., Richardson, J. A. & Johnson, J. E. Correct coordination of neuronal differentiation events in ventral forebrain requires the bHLH factor MASH1. Mol. Cell. Neurosci. 14, 355–369 (1999)

  20. 20

    Hendry, S. H. & Carder, R. K. Neurochemical compartmentation of monkey and human visual cortex; similarities and variations in calbindin immunoreactivity across species. Vis. Neurosci. 10, 1109–1120 (1993)

  21. 21

    Jones, E. G. GABAergic neurons and their role in cortical plasticity in primates. Cereb. Cortex 3, 361–372 (1993)

  22. 22

    Sidman, R. L. & Rakic, P. Neuronal migration, with special reference to developing human brain: A review. Brain Res. 62, 1–35 (1973)

  23. 23

    Fode, C. et al. A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons. Genes Dev. 14, 67–80 (2000)

  24. 24

    Tarabykin, V., Stoykova, A., Usman, N. & Gruss, P. Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression. Development 128, 1983–1993 (2001)

  25. 25

    Kakita, A. & Goldman, J. Patterns and dynamics of SVZ cell migration in the postnatal forebrain: monitoring living progenitors in slice preparations. Neuron 23, 461–472 (1999)

  26. 26

    Preuss, T. Taking the measure of diversity: comparative alternatives in the model-animal paradigm in cortical neuroscience. Brain Behav. Evol. 55, 287–299 (2000)

  27. 27

    Rakic, P. Specification of cerebral cortical areas. Science 241, 170–176 (1988)

  28. 28

    Gleeson, J. G. & Walsh, C. A. Neuronal migration disorders: From genetic diseases to developmental mechanisms. Trends Neurosci. 23, 352–359 (2000)

  29. 29

    Jones, E. G. Cortical development and thalamic pathology in schizophrenia. Schizophr. Bull. 23, 483–501 (1997)

  30. 30

    Lewis, D. A. GABAergic local circuit neurons and prefrontal cortical dysfunction in schizophrenia. Brain Res. Rev. 31, 270–276 (2000)

  31. 31

    Haydar, T. F., Bambrick, L. L., Kruger, B. K. & Rakic, P. Embryonic organotypic slice cultures for analysis of proliferation, cell death and migration in the cerebral wall. Brain Res. Protocols 4, 425–437 (1999)

  32. 32

    Letinic, K. & Rakic, P. Telencephalic origin of human thalamic GABAergic neurons. Nature Neurosci. 4, 931–936 (2001)

Download references

Acknowledgements

We thank J. E. Johnson for providing Mash1 antibodies and J. L. R. Rubenstein and S. Anderson for providing Dlx1/2 antibodies. We also thank F. Miller for providing Ta1-LacZ plasmid. We are grateful to all colleagues in the laboratory of P. R. for their advice and comments on the manuscript.

Author information

Affiliations

  1. Yale University School of Medicine, Section of Neurobiology, New Haven, Connecticut, 06510, USA

    • Kresimir Letinic
    • , Roberto Zoncu
    •  & Pasko Rakic

Authors

  1. Search for Kresimir Letinic in:

  2. Search for Roberto Zoncu in:

  3. Search for Pasko Rakic in:

Competing interests

The authors declare that they have no competing financial interests.

Corresponding author

Correspondence to Pasko Rakic.

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/nature00779

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.