Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sandstone arches form under their own stress

Downward pressure and erosion combine to create celebrated rock formations. 

Sandstone structures such as Delicate Arch at Arches National Park in Utah owe their shapes to the way gravity consolidates sand grains together, creating pillars that are more resistant to erosion. Credit: Michael Atman

The fantastical arch shapes of sandstone formations have long been thought to be sculpted by wind and rain. But a team of researchers has now found that the shapes are inherent to the rock itself.

Scientist killed on MH17 flight fought for access to HIV therapy Quantum gravity suggests black holes will turn into 'white holes' Understanding the effects of weight-loss surgery

“Erosion gets [excess] material out, but doesn’t make the shape,” says Jiri Bruthans, a hydrogeologist at Charles University in Prague, who led the research. Rather, erosion is merely a “tool” that works in combination with more fundamental factors embedded in the rock.

These factors are stress fields created by the weight of overlying rock. Under low stress, Bruthans says, sandstone erodes easily. But as stress mounts — as parts of a cliff or pillar are eroded away, for example — the sand grains on the surface of the remaining rock lock together and become more resistant to further erosion1.

Bruthans’ insight came when he visited the Stralec Quarry in the Czech Republic, where a loosely packed form of sandstone known as 'rock sand' is mined.

Even though there is no natural cement binding the sand grains into rock, mining it requires blasting at the sandstone’s face to break the sand loose, says Alan Mayo, a hydrogeologist at Brigham Young University in Provo, Utah, and a co-author of the study. But once the rock is disrupted, he says, “it just disintegrates”.

Bruthans adds that after blasting, the sandstone in the quarry rapidly formed arches and other features common to the tourist attractions seen in places such as Utah’s Arches National Park.

To find out how such soft material could do this, the scientists took samples into the lab, cut them into small cubes, and used pressure plates to simulate the weight of overlying material. They then subjected the cubes to simulated rain or other erosive forces.

What they found, as report today in Nature Geoscience1, is that when subjected to such pressures, even these otherwise crumbly materials quickly eroded into arches, alcoves and pillars that then became extremely resistant to further erosion. Subsequent experiments with more firmly consolidated sandstones from the North American Southwest produced the same result (see video below).

What happens, Mayo says, is that as erosion undercuts the material in ways that would normally cause it to collapse, pressure mounts along the remaining rock where the greatest amount of material has been removed. Eventually, a critical pressure is reached at which the sand grains lock together and become “incredibly stable”, he says.

Numerical modelling revealed that the resulting shapes followed the stress fields — a finding that also applied to natural landforms such as Utah’s emblematic Delicate Arch, a free-standing structure that is 20 metres tall.

Supporting the theory, Mayo adds, was a field trip to a part of Arches National Park where there have been recent rock falls. “We looked at the blocks on the ground, and they were completely disintegrated,” he says. “[They] no longer had that critical stress.”

Other scientists, (including sedimentologist Chris Paola of the University of Minnesota in Minneapolis, who wrote an accompanying News & Views), say the work provides an answer to the long-standing question of how such sandstone landscapes form. Gordon Grant, a research hydrologist at the US Forest Service's Pacific Northwest Research Station in Corvallis, Oregon, calls the explanation "simple, elegant, and plausible".

The findings do not mean that all sandstone arches, alcoves or other features should be identical. “Nature is very complex,” Bruthans says. “Initial conditions matter.

References

  1. Bruthans, J. et al. Nature Geosci. http://dx.doi.org/10.1038/ngeo2209 (2014).

Download references

Authors

Additional information

Read the related News & Views article.

Electronic supplementary material

How natural arches form

Related links

Related links

Related links in Nature Research

Mapping river geometry gives clues to past terrains 2014-Mar-06

Grand Canyon is not so ancient 2014-Jan-26

Grand Canyon born on East coast 2003-Sep-16

Related external links

Arches National Park

Jiri Bruthans

Natural Bridges National Monument

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lovett, R. Sandstone arches form under their own stress. Nature (2014). https://doi.org/10.1038/nature.2014.15590

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nature.2014.15590

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing