Materials science and architecture

Article metrics

Abstract

Materiality — the use of various materials in architecture — has been fundamental to the design and construction of buildings, and materials science has traditionally responded to needs formulated by design, engineering and construction professionals. Material properties and processes are shaping buildings and influencing how they perform. The advent of technologies such as digital fabrication, robotics and 3D printing have not only accelerated the development of new construction solutions, but have also led to a renewed interest in materials as a catalyst for novel architectural design. In parallel, materials science has transformed from a field that explains materials to one that designs materials from the bottom up. The conflation of these two trends is giving rise to materials-based design research in which architects, engineers and materials scientists work as partners in the conception of new materials systems and their applications. This Review surveys this development for different material classes (wood, ceramics, metals, concrete, glass, synthetic composites and polymers), with an emphasis on recent trends and innovations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Material property (Ashby) plots for different classes of construction materials.
Figure 2: Properties of wood, as well as architectural and design insights from botanical
Figure 3: Ceramic characterization and production from the nanoscale to the macroscale.
Figure 4: Modern advances in metal structural characterization and architectural applications.
Figure 5: Recent advances in concrete characterization and fabrication.
Figure 6: Glass processing and architectural applications.
Figure 7: Scales of analysis and design in composites science.
Figure 8: Polymer research from the nanoscale to the macroscale.

References

  1. 1

    Addington, M. & Schodek, D. Smart Materials and Technologies: For the Architecture and Design Professions (Routledge, 2005).

  2. 2

    Knippers, J., Nickel, K. & Speck, T. Biomimetic Research for Architecture and Building Construction (Springer, 2016).

  3. 3

    Picon, A. & Thom, M. French Architects and Engineers in the Age of Enlightenment (Cambridge Univ. Press, 1992).

  4. 4

    Elliott, C. D. Technics and Architecture: the Development of Materials and Systems for Buildings (MIT Press, 1992).

  5. 5

    Schodek, D. L., Bechthold, M., Kao, K., Griggs, K. & Steinberg, M. Digital Design and Manufacturing (Wiley, 2005).

  6. 6

    Ashby, M. F., Ferreira, P. J. & Schodek, D. L. Nanomaterials, Nanotechnologies and Design (Elsevier, 2009).

  7. 7

    Sabin, J. & Santangelo, C. in MRS Symposium Proceedings Vol. 1800 (Cambridge Univ. Press, 2015).

  8. 8

    Gutierrez, M. P. & Lee, L. P. Multiscale design and integration of sustainable building functions. Science 341, 247 –248 (2013).

  9. 9

    Sellers, T. Plywood and Adhesive Technology (CRC Press, 1985).

  10. 10

    Marra, A. A. Technology of Wood Bonding (Springer, 1992).

  11. 11

    van den Kuilen, J. G., Zhouyan, A. C. & Minjuan, H. Very tall wooden buildings with cross laminated timber. Procedia Eng. 14, 1621–1628 (2011).

  12. 12

    Harries, K. S. & Sharma, B. Nonconventional and Vernacular Construction Materials: Characterisation, Properties and Applications (Woodhead Publishing, 2016).

  13. 13

    Wang, Z., Li, Z., Gu, Z., Hong, Y. & Cheng, L. Preparation, characterization and properties of starch-based wood adhesive. Carbohydr. Polym. 88, 699–706 (2012).

  14. 14

    Dorr, D. N., Frazier, S. D., Hess, K. M., Traeger, L. S. & Srubar, W. V. III. Bond strength of biodegradable gelatin-based wood adhesives. J. Renewable Mater. 3, 195–204 (2015).

  15. 15

    Haag, A. P., Geesey, G. G. & Mittleman, M. W. Bacterially derived wood adhesive. Int. J. Adhes. Adhes. 26, 177–183 (2006).

  16. 16

    Hahn, B., Vallée, T., Stamm, B. & Weinand, Y. Moment resisting connections composed of friction-welded spruce boards: experimental investigations and numerical strength prediction. Eur. J. Wood Prod. 72, 229–241 (2014).

  17. 17

    Stamm, B., Natterer, J. & Navi, P. Joining wood by friction welding. Holz Roh- Werkst. 63, 313–320 (2005).

  18. 18

    Lee, S.-H. & Wang, S. Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Composites Part A 37, 80–91 (2006).

  19. 19

    Bao, L., Chen, Y., Zhou, W., Wu, Y. & Huang, Y. Bamboo fibers poly(ethylene glycol)-reinforced poly(butylene succinate) biocomposites. J. Appl. Polym. Sci. 122, 2456–2466 (2011).

  20. 20

    Strode, W. & Dean, D. L. Experiments With a Single Layer Plywood Monkey Saddle Shell (Univ. Kansas Publications, 1961).

  21. 21

    Krauss, F. Hyerbolische paraboloide Schalen aus Holz [German] (Krämer, 1969).

  22. 22

    Bechthold, M. Wood-foam sandwich shells: computer-aided manufacturing of complex shapes. J. Int. Assoc. Shell Spatial Struct. 44, 679–690 (2002).

  23. 23

    Dawson, C., Vincent, J. F. V. & Rocca, A.-M. How pine cones open. Nature 390, 668 (1997).

  24. 24

    Elbaum, R., Zaltzman, L., Burgert, I. & Fratzl, P. The role of wheat awns in the seed dispersal unit. Science 316, 884–886 (2007).

  25. 25

    Harrington, M. J. et al. Origami-like unfolding of hydro-actuated ice plant seed capsules. Nat. Commun. 2, 337 (2011).

  26. 26

    Menges, A. & Reichert, S. Performative wood: physically programming the responsive architecture of the Hygroscope and Hygroskin projects. Architectural Design 85, 66–73 (2015).

  27. 27

    Wood, D. M., Correa, D., Krieg, O. D. & Menges, A. Material computation — 4D timber construction: towards building-scale hygroscopic actuated self-constructing timber surfaces. Int. J. Arch. Comput. 14, 49–62 (2016).

  28. 28

    Tarkow, H. & Turner, H. The swelling pressure of wood. For. Prod. J. 8, 193–197 (1958).

  29. 29

    Reichert, S., Menges, A. & Correa, D. Meteorosensitive architecture: biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness. Comput. Aided Design 60, 50–69 (2015).

  30. 30

    Correa, D. et al. 3D-printed wood: programming hygroscopic material transformations. 3D Print. Add. Manufactur. 2, 106–116 (2015).

  31. 31

    Bechthold, M., Kane, A. & King, N. Ceramic Material Systems (Birkhäuser, 2015).

  32. 32

    King, N., Bechthold, M., Kane, A. & Michalatos, P. Robotic tile placement: tools, techniques and feasibility. Auto. Constr. 39, 161–166 (2013).

  33. 33

    Van Aubel, M. Ceramic foam. US Patent 20150018195 (2015).

  34. 34

    Bernardo, E., De Lazzari, M., Colombo, P., Llaudis, A. S. & Garcia-Ten, F. J. Lightweight porcelain stoneware by engineered CeO2 addition. Adv. Eng. Mater. 12, 65–70 (2010).

  35. 35

    Diegel, O., Withell, A., de Beer, D., Potgier, J. & Noble, F. Low-cost 3D printing of controlled porosity ceramic parts. Int. J. Auto. Technol. 6, 618–626 (2012).

  36. 36

    Bechthold, M., King, N., Kane, A. O., Niemasz, J. & Reinhart, C. in Proc. 28th ISARC, Seoul, Korea 70–75 (2011).

  37. 37

    Bechthold, M. Prototipos cerámicos — diseño, computación y fabricación digital [Spanish]. Inf. Constr. 68, 91–102 (2016).

  38. 38

    Moon, J., Grau, J. E., Knezevic, V., Cima, M. J. & Sachs, E. M. Ink-jet printing of binders for ceramic components. J. Am. Ceram. Soc. 85, 755–762 (2002).

  39. 39

    Grinham, J., Blabolil, R. & Haak, J. Harvest shade screens: programming material for optimal energy building skins. ACADIAhttp://papers.cumincad.org/data/works/att/acadia14_281.content.pdf (2014).

  40. 40

    Castellano, M. G., Indirli, M. & Martelli, A. Progress of application, research and development, and design guidelines for shape memory alloy devices for cultural heritage structures in Italy. Proc. SPIEhttps://dx.doi.org/10.1117/12.434124 (2001).

  41. 41

    Niehe, P. Construction steelwork makes its 3D printing premiere. Aruphttp://www.arup.com/news/2014_06_june/05_june_construction_steelwork_makes_3d_printing_premiere (2014).

  42. 42

    Baker, R. Method of making decorative articles. US Patent 1533300A (1925).

  43. 43

    Warton, J., Dwivedi, R. & Kovacevic, R. in Robotic Fabrication in Architecture, Art and Design 2014 (eds McGee, W. & de Leon, M. P. ) 147–161 (Springer, 2014).

  44. 44

    Skylar-Scott, M. A., Gunaesekaran, S. & Lewis, J. A. Laser-assisted direct ink writing of planar and 3D metal architectures. Proc. Natl Acad. Sci. USA 113, 6137–6142 (2016).

  45. 45

    Ribeiro, F., Norrish, J. & McMaster, R. S. Practical case of rapid prototyping using gas metal arc welding. Repositoriumhttp://repositorium.sdum.uminho.pt/bitstream/1822/3141/1/04%20PARIS.pdf (1994).

  46. 46

    Riberio, F. & Norrish, J. Making components with controlled metal deposition. Proc. IEEE Int. Symp. Ind. Electron. https://dx.doi.org/10.1109/ISIE.1997.648647 (1997).

  47. 47

    Kind-Barkauskas, F., Kauhsen, B., Polónyi, S. & Brandt, J. Beton Atlas [German] 2nd edn (Walter de Gruyter, 2002).

  48. 48

    Jones, B. E. Cassell's Reinforced Concrete (Cassell and Co., 1913).

  49. 49

    Plank, J. Applications of biopolymers and other biotechnological products in building materials. Appl. Microbiol. Biotechnol. 66, 1–9 (2004).

  50. 50

    Raki, L., Beaudoin, J., Alizadeh, R., Makar, J. & Taijiro, S. Cement and concrete nanoscience and nanotechnology. Materials 3, 918–942 (2010).

  51. 51

    Richard, P. in Proc. 4th Int. Symp. Utilization High-Strength/High-Performance Concrete (eds de Larrard, F. & Lacroix, R. ) 1343–1357 (1996).

  52. 52

    Russel, H. G. & Graybeal, B. A. Ultra-high performance concrete: a state-of-the-art report for the bridge community U.S. Department of Transportation, Federal Highway Adminstrationhttps://www.fhwa.dot.gov/publications/research/infrastructure/structures/hpc/13060/13060.pdf (2013).

  53. 53

    Forstlechner, F. X., Freytag, B. & Peters, S. Spannbett-vorspannung dünner Carbonbeton-Platten [German]. Beton-Stahlbetonbau 110, 419–428 (2015).

  54. 54

    Means, R. 2016 Building Construction Cost Data Book 74th edn (ed. Plotner, S. C. ) (RS Means, 2016).

  55. 55

    Amtsberg, F., Parmann, G., Trummer, A. & Peters, S. in Robotic Fabrication in Architecture, Art and Design 2016 (eds Reinhardt, D., Saunders, R. & Burry, J. ) 304–315 (Springer, 2016).

  56. 56

    Bock, T. Construction robotics. Auto. Robots 22, 201–209 (2007).

  57. 57

    Wheen, R. J. & Bridge, R. Q. ORIHUNE-the World's first folded concrete canoe. J. Ferrocement 11, 311–318 (1981).

  58. 58

    Bechthold, M. in Proc. IASS Symp. Shell and Spatial Structures: Structural Architecture 53–56 (IASS, 2007).

  59. 59

    Redjvani, A. WO/1993/020990A1 (1993).

  60. 60

    Guerrini, G. L. & Roberta, A. EP1957245 (2014).

  61. 61

    Lloret, E. et al. Complex concrete structures: merging existing casting techniques with digital fabrication. Comput. Aided Design 60, 40–49 (2015).

  62. 62

    Penja, J. Exploratory investigation of solid freeform construction. Auto. Constr. 5, 427–437 (1997).

  63. 63

    Dini, E., Chiarugi, M. & Nannini, R. Method and device for building automatically conglomerate structures. US Patent 20080148683 A1 (2008).

  64. 64

    Cesaretti, G., Dini, E., De Kestelier, X., Colla, V. & Pambaguian, L. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronaut. 93, 430–450 (2014).

  65. 65

    Koshnevis, B. & Dutton, R. Innovative rapid prototyping process makes large sized, smooth surfaced complex shapes in a wide variety of materials. Mater. Technol. 13, 52–56 (1998).

  66. 66

    Khoshnevis, B. et al. Lunar contour crafting — a novel technique for ISRU-based habitat development. Aero. Sci. Meetingshttps://dx.doi.org/10.2514/6.2005-538 (2005).

  67. 67

    Koshnevis, B. Automated construction by contour crafting — related robotics and information technologies. Auto. Constr. 13, 5–19 (2004).

  68. 68

    Le, T. T. et al. Mix design and fresh properties for high-performance printing concrete. Mater. Struct. 45, 1221–1232 (2012).

  69. 69

    Lim, S. et al. Developments in construction-scale additive manufacturing processes. Auto. Constr. 21, 262–268 (2012).

  70. 70

    Buswell, R. A., Thorpe, A., Soar, R. C. & Gibb, A. F. Design, data and process issues for mega-scale rapid manufacturing machines used for construction. Auto. Constr. 17, 923–929 (2008).

  71. 71

    Le, T. T. et al. Hardened properties of high-performance printing concrete. Cem. Concr. Res. 42, 558–566 (2012).

  72. 72

    Feng, P., Meng, X., Chen, J.-F. & Ye, L. Mechanical properties of structures 3D printed with cementitious powders. Constr. Build. Mater. 93, 486–497 (2015).

  73. 73

    Kim, T., Tae, S. & Roh, S. Assessment of the CO2 emission and cost reduction performance of low-carbon-emission concrete mix design using an optimal mix design system. Renewable Sustainable Energy Rev. 25, 729–741 (2013).

  74. 74

    Hub, A., Zimmermann, G. & Knippers, J. Leichtbeton mit Aerogelen als Konstruktionswerkstoff [German]. Beton Stahlbetonbau 108, 654–661 (2013).

  75. 75

    Schlaich, M. & Hückler, A. Infraleichtbeton 2.0 [German]. Beton Stahlbetonbau 107, 757–766 (2012).

  76. 76

    Herrman, M. & Sobek, W. Gradientenbeton — Numerische Entwurfsmethoden und experimentelle Untersuchung gewichtsoptimierer Bauteile [German]. Beton Stahlbetonbau 110, 673–686 (2015).

  77. 77

    Ge, D. et al. Robust smart window: reversible switching from high transparency to angle-independent structural color display. Adv. Mater. 27, 2489–2495 (2015).

  78. 78

    Kim, P. et al. Rational design of mechano-responsive optical materials by fine tuning the evolution of strain-dependent wrinkling patterns. Adv. Opt. Mater. 1, 381–388 (2013).

  79. 79

    Marchelli, G., Prabhakar, R., Storti, D. & Ganter, M. The guide to glass 3D printing: developments, methods, diagnostics and results. Rapid Prototyp. J. 17, 187–194 (2011).

  80. 80

    Klein, J. et al. Additive manufacturing of optically transparent glass. 3D Print. Addit. Manufactur. 2, 92–105 (2015).

  81. 81

    Sheil, B., Menges, A., Glynn, R. & Skavara, M. Fabricate: rethinking design and construction. University College Londonhttps://www.ucl.ac.uk/bartlett/architecture/case-studies/2017/apr/fabricate-2017-rethinking-design-and-construction (2017).

  82. 82

    Bakis, C. E. et al. Fiber-reinforced polymer composites for construction — state-of-the-art review. J. Compos. Constr. 6, 73–87 (2002).

  83. 83

    John, M. J. & Thomas, S. Biofibers and biocomposites. Carboydr. Polym. 71, 343–364 (2008).

  84. 84

    Faruk, O., Bledzki, A. K., Fink, H.-P. & Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 37, 1552–1596 (2012).

  85. 85

    Lee, S.-H. & Wang, S. Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Composites 37, 80–91, (2006).

  86. 86

    Koch, K.-M. Membrane Structures: the Fifth Building Material (Prestel, 2004).

  87. 87

    Koebel, M., Rigacci, A. & Achard, P. Aerogel-based thermal superinsulation: an overview. J. Sol-Gel Sci. Technol. 63, 315–339 (2012).

  88. 88

    Augustyniak, M. J. & McCoy, T. D. Architectural membrane and method of making same. USA Patent 8899000 B2 (2014).

  89. 89

    Park, Y., Gurierrez, M. P. & Lee, L. P. Reversible self-actuated thermo-responsive pore membrane. Sci. Rep. 6, 39402 (2016).

  90. 90

    Keire, F. A. Sail of woven material and method of manufacture. USA Patent 6257160 B1 (2001).

  91. 91

    Knippers, J., Jungjohann, H., Scheible, F. & Oppe, M. Bio-inspirierte kinetische Fassade fuer den Themenpavillion “one ocean” EXPO 2012 in Yeosu. Korea [German]. Bautechnik 90, 341–347 (2013).

  92. 92

    Waimer, F. et al. Bionisch-inspirierte Faserverbundstrukturen [German]. Bautechnik 90, 766–771 (2013).

  93. 93

    Masselter, T. et al. Biomimetic optimisation of branched fibre-reinforced composites in engineering by detailed analyses of biological concept generators. Bioinspir. Biomim. 11, 055005 (2016).

  94. 94

    Mark, G. T. Methods for fiber reinforced additive manufacturing. US Patent 20140361460 A1 (2014).

  95. 95

    Engelsmann, S., Spalding, V. & Peters, S. Kunststoffe in Architektur und Konstruktion [German] (Birkhäuser, 2010).

  96. 96

    Bell, M. & Buckley, C. Permanent Change: Plastics in Architecture and Engineering (Princeton Arch. Press, 2014).

  97. 97

    Pacheco-Torgal, F., Jalali, S. & Fucic, A. Toxicity of Building Materials (Woodhead, 2012).

  98. 98

    Fan, J.-N. & Schodek, D. Personalized furniture within the conditions of mass production. Academiahttp://www.academia.edu/1576646/Personalized_furniture_within_the_condition_of_mass_production (2007).

  99. 99

    Oxman, N., Keating, S. & Tsai, E. in Innovative Developments in Virtual and Physical Prototyping (ed. da Silva Bartolo, P. J. ) 483–489 (2011).

  100. 100

    Tibbits, S. & Cheung, K. Programmable materials for architectural assembly and automation. Assembly Auto. 32, 216–225 (2012).

  101. 101

    Tibbits, S. 4D printing: multi-material shape change. Arch. Design 84, 116–121 (2014).

  102. 102

    Babaee, S. et al. 3D soft metamaterials with negative Poisson's ratio. Adv. Mater. 25, 5044–5049 (2013).

  103. 103

    Hatton, B. D. et al. An artificial vasculature for adaptive thermal control of windows. Sol. Energy Mater. Sol. Cells 117, 429–436 (2013).

  104. 104

    Park, D. et al. Dynamic daylight control system implementing thin cast arrays of polydimethylsiloxane-based millimeter-scale transparent louvers. Build. Environ. 82, 87–96 (2014).

  105. 105

    Bechthold, M. & Sayegh, A. Hacking science: the ALivE group's material design methods for interdisciplinary environments. Arch. Design 85, 108–113 (2015).

  106. 106

    Gramazio, F. & Kohler, M. Digital Materiality in Architecture (Lars-Müller, 2008).

  107. 107

    Ivanov, V. & Stabnikov, V. Construction Biotechnology (Springer, 2017).

  108. 108

    Bayer, E. & McIntyre, G. Method for making dehydrated mycelium elements and product made thereby. US Patent US20120270302A1 (2012).

  109. 109

    Dawood, S. Designer grows funiture from the ground. Design Weekhttps://www.designweek.co.uk/issues/30-march-5-april-2015/designer-grows-furniture-from-the-ground/ (2015).

  110. 110

    Dosier, G. K. Methods for making construction materials using enzyme producing bacteria. US Patent US9199880B2 (2014).

  111. 111

    Miserez, A. et al. Microstructural and biochemical characterization of the nanoporous sucker rings from Dosidicus gigas. Adv. Mater. 21, 401–406 (2009).

  112. 112

    Weaver, J. C. et al. Analysis of an ultra hard magnetic biomineral in chiton radular teeth. Mater. Today 13, 42–52 (2010).

  113. 113

    Frølich, S., Weaver, J. C., Dean, M. N. & Birkedal, H. Uncovering nature's design strategies through parametric modeling, multi-material 3D printing, and mechanical testing. Adv. Eng. Mater. 19, e201600848 (2017).

  114. 114

    Ashby, M. Materials and the Environment (Butterworth–Heinemann, 2009).

  115. 115

    Gibson, L. J., Ashby, M. F. & Harley, B. A. Cellular Materials in Nature and Medicine (Cambridge Univ. Press, 2010).

  116. 116

    Leban, J. M. et al. Wood welding: a challenging alternative to conventional wood gluing. Scand. J. For. Res. 20, 534–538 (2005).

  117. 117

    Sang, X. & LeBeau, J. M. Revolving scanning transmission electron microscopy: correcting sample drift distortion without prior knowledge. Ultramicroscopy 138, 28–35 (2014).

  118. 118

    Brom, J. E. Growth and Characterization of Bismuth Selenide Thin Films by Chemical Vapour Deposition. Thesis, Penn. State Univ. (2014).

  119. 119

    Saleh, A. A., Gazder, A. A. & Pereloma, E. V. EBSD observations of recrystallisation and tensile deformation in twinning induced plasticity steel. Trans. Indian Inst. Met. 66, 621–629 (2013).

  120. 120

    Dmitrieva, O. et al. Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation. Acta Mater. 59, 364–374 (2011).

  121. 121

    Ramazani, A., Mukherjee, K., Quade, H., Prahl, U. & Bleck, W. Correlation between 2D and 3D flow curve modelling of DP steels using a microstructure-based RVE approach. Mater. Sci. Eng. A 560, 129–139 (2013).

  122. 122

    Lanzón, M., Cnudde, V., de Kock, T. & Dewanckele, J. X-Ray microtomography (μ-CT) to evaluate microstructure of mortars containing low density additions. Cem. Concr. Comp. 34, 993–1000 (2012).

  123. 123

    Cho, H. et al. Engineering the mechanics of heterogeneous soft crystals. Adv. Funct. Mater. 26, 6938–6949 (2016).

  124. 124

    Gurley, A., Beale, D., Broughton, R. & Branscomb, D. The design of optimal lattice structures manufactured by maypole braiding. J. Mech. Eng. 137, 101401 (2015).

  125. 125

    Sun, J.-Y. et al. Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012).

  126. 126

    Na, J.-H. et al. Programming reversibly self-folding origami with micropatterned photo-crosslinkable polymer trilayers. Adv. Mater. 27, 79–85 (2015).

  127. 127

    Shim, J. et al. Harnessing instabilities for design of soft reconfigurable auxetic/chiral materials. Soft Matter 9, 8198–8202 (2013).

  128. 128

    Mesa, O. et al. Non-linear matters: auxetic surfaces. ACADIAhttp://papers.cumincad.org/data/works/att/acadia17_392.pdf (2017).

  129. 129

    Tucker, S. N. & Ambrose, M. D. Embodied energy of dwellings. CSIROhttps://publications.csiro.au/rpr/download?pid=procite:54757bf5-6619-4ba8-8415-4012ca2a477e&dsid=DS1 (2017).

Download references

Acknowledgements

The research presented here draws on collaborations between the Harvard Graduate School of Design, the Wyss Institute for Biologically Inspired Engineering, the Harvard Paulson School of Engineering and Applied Sciences, the Massachusetts Institute of Technology (MIT) Media Lab, the MIT Department of Civil and Environmental Engineering, the Max Planck Institute of Colloids and Interfaces, and the Nanyang Technological University School of Materials Science & Engineering. In particular, the authors thank Joanna Aizenberg, Katia Bertoldi, David Mooney, Allen Sayegh, Chuck Hoberman, Neri Oxman, Admir Masic, Peter Fratzl, Mason Dean, John Dunlop, Matt Harrington, Lorenzo Guiducci, Ali Miserez, Jack Mershon, Jonathan Grinham, Tiffany Cheng, Kelley Hess, Sarah Norman, Saurabh Mhatre, Malika Singh, Kevin Hinz, Daekwon Park, Olga Mesa, Philseok Kim, Johannes Overvelde, Jack Alvarenga, Onye Ahanotu, Kenneth Park, Benjamin Hatton and Luo Gu for their contributions to this work.

Author information

Both authors contributed equally to the preparation of this manuscript.

Correspondence to Martin Bechthold or James C. Weaver.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bechthold, M., Weaver, J. Materials science and architecture. Nat Rev Mater 2, 17082 (2017) doi:10.1038/natrevmats.2017.82

Download citation

Further reading