Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanostructured electrocatalysts with tunable activity and selectivity

Abstract

The field of electrocatalysis has undergone tremendous advancement in the past few decades, in part owing to improvements in catalyst design at the nanoscale. These developments have been crucial for the realization of and improvement in alternative energy technologies based on electrochemical reactions such as fuel cells. Through the development of novel synthesis methods, characterization techniques and theoretical methods, rationally designed nanoscale electrocatalysts with tunable activity and selectivity have been achieved. This Review explores how nanostructures can be used to control electrochemical reactivity, focusing on three model reactions: O2 electroreduction, CO2 electroreduction and ethanol electrooxidation. The mechanisms behind nanoscale control of reactivity are discussed, such as the presence of low-coordinated sites or facets, strain, ligand effects and bifunctional effects in multimetallic materials. In particular, studies of how particle size, shape and composition in nanostructures can be used to tune reactivity are highlighted.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Synthesis of Pt-skin, Pt-monolayer and dealloyed Pt-bimetallic nanoparticles with a core–shell structure.
Figure 2: Influence of surface morphology and electronic surface properties on the kinetics of the ORR.
Figure 3: Performance evolution of shaped PtNi nanoparticles.
Figure 4: Nanostructure effects on the selectivity of Cu catalysts for CO2 electroreduction.
Figure 5: Nanostructure effects on activity and selectivity of Au catalysts for CO2 electroreduction.
Figure 6: Effect of support-induced strain on CO2 electroreduction catalysts.
Figure 7: Strain-induced enhancement in the catalytic activity of Pt MLs for ethanol oxidation.
Figure 8: Overview of the mechanisms behind activity and selectivity control in nanostructured electrocatalysts.

References

  1. 1

    Vielstich, W., Lamm, A. & Gasteiger, H. Handbook of Fuel Cells — Fundamentals, Technology, and Applications (Wiley, 2003).

    Google Scholar 

  2. 2

    Gasteiger, H. A., Kocha, S. S., Sompalli, B. & Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56, 9–35 (2005).

    CAS  Google Scholar 

  3. 3

    Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012).

    CAS  Google Scholar 

  4. 4

    Evans, U. R. Cathodic reduction of oxygen in fuel cells and corrosion cells. Nature 218, 602–603 (1968).

    CAS  Google Scholar 

  5. 5

    Liang, C. C. & Juliard, A. L. Reduction of oxygen at platinum electrode. Nature 207, 629–630 (1965).

    CAS  Google Scholar 

  6. 6

    Huang, X. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 348, 1230–1234 (2015).

    CAS  Google Scholar 

  7. 7

    Markovic´, N. M. & Ross, P. N. Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 45, 117–229 (2002).

    Google Scholar 

  8. 8

    Jiao, Y., Zheng, Y., Jaroniec, M. T. & Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015).

    CAS  Google Scholar 

  9. 9

    Nie, Y., Li, L. & Wei, Z. D. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 44, 2168–2201 (2015).

    CAS  Google Scholar 

  10. 10

    Stephens, I. E. L., Bondarenko, A. S., Andersen, U. G., Rossmeisl, J. & Chorkendorff, I. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 5, 6744–6762 (2012).

    CAS  Google Scholar 

  11. 11

    Bing, Y., Liu, H., Zhang, L., Ghosh, D. & Zhang, J. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem. Soc. Rev. 39, 2184–2202 (2010).

    CAS  Google Scholar 

  12. 12

    Krischer, K. & Savinova, E. R. in Handbook of Heterogeneous Catalysis (eds Ertl, G., Knözinger, H. & Weitkamp, J. ) 1873–1905 (Wiley, 2008).

    Google Scholar 

  13. 13

    Markovic, N., Schmidt, T., Stamenkovic, V. & Ross, P. Oxygen reduction reaction on Pt and Pt bimetallic surfaces: a selective review. Fuel Cells 1, 105–116 (2001).

    CAS  Google Scholar 

  14. 14

    Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Google Scholar 

  15. 15

    Abild-Pedersen, F. et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99, 016105 (2007).

    CAS  Google Scholar 

  16. 16

    Stephens, I. E. L. et al. Tuning the activity of Pt(111) for oxygen electroreduction by subsurface alloying. J. Am. Chem. Soc. 133, 5485–5491 (2011).

    CAS  Google Scholar 

  17. 17

    Adžic´, R., Strbac, S. & Anastasijevic´, N. Electrocatalysis of oxygen on single crystal gold electrodes. Mater. Chem. Phys. 22, 349–375 (1989).

    Google Scholar 

  18. 18

    Mavrikakis, M., Hammer, B. & Nørskov, J. K. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 81, 2819 (1998).

    Google Scholar 

  19. 19

    Kibler, L. A., El-Aziz, A. M., Hoyer, R. & Kolb, D. M. Tuning reaction rates by lateral strain in a palladium monolayer. Angew. Chem. Int. Ed. Engl. 44, 2080–2084 (2005).

    CAS  Google Scholar 

  20. 20

    Zhang, J., Vukmirovic, M. B., Xu, Y., Mavrikakis, M. & Adzic, R. R. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem. Int. Ed. Engl. 44, 2132–2135 (2005).

    CAS  Google Scholar 

  21. 21

    Genorio, B. et al. Tailoring the selectivity and stability of chemically modified platinum nanocatalysts to design highly durable anodes for PEM fuel cells. Angew. Chem. Int. Ed. Engl. 50, 5468–5472 (2011).

    CAS  Google Scholar 

  22. 22

    Genorio, B. et al. Selective catalysts for the hydrogen oxidation and oxygen reduction reactions by patterning of platinum with calix[4]arene molecules. Nat. Mater. 9, 998–1003 (2010).

    CAS  Google Scholar 

  23. 23

    Kinoshita, K. Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes. J. Electrochem. Soc. 137, 845–848 (1990).

    CAS  Google Scholar 

  24. 24

    Mukerjee, S. Particle size and structural effects in platinum electrocatalysis. J. Appl. Electrochem. 20, 537–548 (1990).

    CAS  Google Scholar 

  25. 25

    Mukerjee, S. & McBreen, J. Effect of particle size on the electrocatalysis by carbon-supported Pt electrocatalysts: an in situ XAS investigation. J. Electroanal. Chem. 448, 163–171 (1998).

    CAS  Google Scholar 

  26. 26

    Kuzume, A., Herrero, E. & Feliu, J. M. Oxygen reduction on stepped platinum surfaces in acidic media. J. Electroanal. Chem. 599, 333–343 (2007).

    CAS  Google Scholar 

  27. 27

    Markovic, N. M., Gasteiger, H. A. & Ross, P. N. Oxygen reduction on platinum low-index single-crystal surfaces in alkaline solution: rotating ring diskPt(hkl) studies. J. Phys. Chem. 100, 6715–6721 (1996).

    Google Scholar 

  28. 28

    Bandarenka, A. S., Hansen, H. A., Rossmeisl, J. & Stephens, I. E. L. Elucidating the activity of stepped Pt single crystals for oxygen reduction. Phys. Chem. Chem. Phys. 16, 13625–13629 (2014).

    CAS  Google Scholar 

  29. 29

    Mayrhofer, K. et al. The impact of geometric and surface electronic properties of Pt catalysts on the particle size effect in electrocatalysis. J. Phys. Chem. B 109, 14433–14440 (2005).

    CAS  Google Scholar 

  30. 30

    Shao, M., Peles, A. & Shoemaker, K. Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett. 11, 3714–3719 (2011).

    CAS  Google Scholar 

  31. 31

    Perez-Alonso, F. J. et al. The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles. Angew. Chem. Int. Ed. Engl. 51, 4641–4643 (2012).

    CAS  Google Scholar 

  32. 32

    Takasu, Y. et al. Size effects of platinum particles on the electroreduction of oxygen. Electrochim. Acta 41, 2595–2600 (1996).

    CAS  Google Scholar 

  33. 33

    Gara, M., Ward, K. & Compton, R. Nanomaterial modified electrodes: evaluating oxygen reduction catalysts. Nanoscale 5, 7304–7311 (2013).

    CAS  Google Scholar 

  34. 34

    Schneider, A. et al. Transport effects in the oxygen reduction reaction on nanostructured, planar glassy carbon supported Pt/GC model electrodes. Phys. Chem. Chem. Phys. 10, 1931–1943 (2008).

    CAS  Google Scholar 

  35. 35

    Seidel, Y. et al. Mesoscopic mass transport effects in electrocatalytic processes. Faraday Discuss. 140, 167–184 (2009).

    Google Scholar 

  36. 36

    Kumar, S. & Zou, S. Electroreduction of O2 on uniform arrays of Pt and PtCo nanoparticles. Electrochem. Commun. 8, 1151–1157 (2006).

    CAS  Google Scholar 

  37. 37

    Yang, H., Kumar, S. & Zou, S. Electroreduction of O2 on uniform arrays of Pt nanoparticles. J. Electroanal. Chem. 688, 180–188 (2013).

    CAS  Google Scholar 

  38. 38

    Speder, J. et al. The particle proximity effect: from model to high surface area fuel cell catalysts. RSC Adv. 4, 14971–14978 (2014).

    CAS  Google Scholar 

  39. 39

    Nesselberger, M. et al. The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters. Nat. Mater. 12, 919–924 (2013).

    CAS  Google Scholar 

  40. 40

    Thompsett, D. in Handbook of Fuel Cells: Fundamentals Technology and Applications Vol. 3 Ch. 37 (eds Vielstich, W., Lamm, A. & Gasteiger, H. ) 467 (Wiley, 2003).

    Google Scholar 

  41. 41

    Strasser, P. Catalysts by platonic design. Science 349, 379–380 (2015).

    CAS  Google Scholar 

  42. 42

    Carpenter, M. K., Moylan, T. E., Kukreja, R. S., Atwan, M. H. & Tessema, M. M. Solvothermal synthesis of platinum alloy nanoparticles for oxygen reduction electrocatalysis. J. Am. Chem. Soc. 134, 8535–8542 (2012).

    CAS  Google Scholar 

  43. 43

    Cui, C. et al. Octahedral PtNi nanoparticle catalysts: exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett. 12, 5885–5889 (2012).

    CAS  Google Scholar 

  44. 44

    Gan, L. et al. Element-specific anisotropic growth of shaped platinum alloy nanocrystals. Science 346, 1502–1506 (2014).

    CAS  Google Scholar 

  45. 45

    Wu, J. B. et al. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J. Am. Chem. Soc. 132, 4984–4985 (2010).

    CAS  Google Scholar 

  46. 46

    Choi, S.-I. et al. Synthesis and characterization of 9 nm Pt–Ni octahedra with a record high activity of 3.3 A/mgPt for the oxygen reduction reaction. Nano Lett. 13, 3420–3425 (2013).

    CAS  Google Scholar 

  47. 47

    Zhang, J., Yang, H., Fang, J. & Zou, S. Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett. 10, 638–644 (2010).

    CAS  Google Scholar 

  48. 48

    Cui, C. et al. Shape-selected bimetallic nanoparticle electrocatalysts: evolution of their atomic-scale structure, chemical composition, and electrochemical reactivity under various chemical environments. Faraday Discuss. 162, 91–112 (2013).

    CAS  Google Scholar 

  49. 49

    Cui, C., Gan, L., Heggen, M., Rudi, S. & Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 12, 765–771 (2013).

    CAS  Google Scholar 

  50. 50

    Cui, C. et al. Carbon monoxide-assisted size confinement of bimetallic alloy nanoparticles. J. Am. Chem. Soc. 136, 4813–4816 (2014).

    CAS  Google Scholar 

  51. 51

    Paulus, U. et al. Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes. Electrochim. Acta 47, 3787–3798 (2002).

    CAS  Google Scholar 

  52. 52

    Paulus, U. et al. Oxygen reduction on carbon-supported Pt–Ni and Pt–Co alloy catalysts. J. Phys. Chem. B 106, 4181–4191 (2002).

    CAS  Google Scholar 

  53. 53

    Stamenkovic, V., Schmidt, T., Ross, P. & Markovic, N. Surface composition effects in electrocatalysis: kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. J. Phys. Chem. B 106, 11970–11979 (2002).

    CAS  Google Scholar 

  54. 54

    Anderson, A. B. et al. Activation energies for oxygen reduction on platinum alloys: theory and experiment. J. Phys. Chem. B 109, 1198–1203 (2005).

    CAS  Google Scholar 

  55. 55

    Stamenkovic, V. et al. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. Int. Ed. Engl. 118, 2963–2967 (2006).

    Google Scholar 

  56. 56

    Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007).

    CAS  Google Scholar 

  57. 57

    Stamenkovic, V. R. et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 6, 241–247 (2007).

    CAS  Google Scholar 

  58. 58

    Wang, C. et al. Monodisperse Pt3Co nanoparticles as a catalyst for the oxygen reduction reaction: size-dependent activity. J. Phys. Chem. C 113, 19365–19368 (2009).

    CAS  Google Scholar 

  59. 59

    Wang, C. et al. Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett. 11, 919–926 (2010).

    Google Scholar 

  60. 60

    van der Vliet, D. F. et al. Unique electrochemical adsorption properties of Pt-skin surfaces. Angew. Chem. Int. Ed. Engl. 124, 3193–3196 (2012).

    Google Scholar 

  61. 61

    Wang, C. et al. Rational development of ternary alloy electrocatalysts. J. Phys. Chem. Lett. 3, 1668–1673 (2012).

    CAS  Google Scholar 

  62. 62

    Wang, C., Markovic, N. M. & Stamenkovic, V. R. Advanced platinum alloy electrocatalysts for the oxygen reduction reaction. ACS Catal. 2, 891–898 (2012).

    CAS  Google Scholar 

  63. 63

    Chen, C. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014).

    CAS  Google Scholar 

  64. 64

    Zhang, J. et al. Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. J. Am. Chem. Soc. 127, 12480–12481 (2005).

    CAS  Google Scholar 

  65. 65

    Nilekar, A. U. et al. Bimetallic and ternary alloys for improved oxygen reduction catalysis. Top. Catal. 46, 276–284 (2007).

    CAS  Google Scholar 

  66. 66

    Wang, J. X. et al. Oxygen reduction on well-defined core–shell nanocatalysts: particle size, facet, and Pt shell thickness effects. J. Am. Chem. Soc. 131, 17298–17302 (2009).

    CAS  Google Scholar 

  67. 67

    Sasaki, K. et al. Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angew. Chem. Int. Ed. Engl. 49, 8602–8607 (2010).

    CAS  Google Scholar 

  68. 68

    Karan, H. I. et al. Catalytic activity of platinum monolayer on iridium and rhenium alloy nanoparticles for the oxygen reduction reaction. ACS Catal. 2, 817–824 (2012).

    CAS  Google Scholar 

  69. 69

    Sasaki, K. et al. Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nat. Commun. 3, 1115 (2012).

    Google Scholar 

  70. 70

    Zhang, Y. et al. Hollow core supported Pt monolayer catalysts for oxygen reduction. Catal. Today 202, 50–54 (2013).

    CAS  Google Scholar 

  71. 71

    Koh, S. & Strasser, P. Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J. Am. Chem. Soc. 129, 12624–12625 (2007).

    CAS  Google Scholar 

  72. 72

    Mani, P. Srivastava, R. & Strasser, P. Dealloyed Pt–Cu core–shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes. J. Phys. Chem. C 112, 2770–2778 (2008).

    CAS  Google Scholar 

  73. 73

    Strasser, P. in Handbook of Fuel Cells: Advances in Electrocatalysis, Materials, Diagnostics and Durability (eds Lamm, A., Vielstich, W., Yokokawa, H. & Gasteiger, H. A. ) 30–47 (Wiley, 2010).

    Google Scholar 

  74. 74

    Strasser, P. Dealloyed core–shell fuel cell electrocatalysts. Rev. Chem. Eng. 25, 255–295 (2009).

    CAS  Google Scholar 

  75. 75

    Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010).

    CAS  Google Scholar 

  76. 76

    Gan, L., Heggen, M., O'Malley, R., Theobald, B. & Strasser, P. Understanding and controlling nanoporosity formation for improving the stability of bimetallic fuel cell catalysts. Nano Lett. 13, 1131–1138 (2013).

    CAS  Google Scholar 

  77. 77

    Oezaslan, M., Hascheé, F.d.r. & Strasser, P. Pt-based core–shell catalyst architectures for oxygen fuel cell electrodes. J. Phys. Chem. Lett. 4, 3273–3291 (2013).

    CAS  Google Scholar 

  78. 78

    Gan, L., Heggen, M., Rudi, S. & Strasser, P. Core–shell compositional fine structures of dealloyed PtxNi1−x nanoparticles and their impact on oxygen reduction catalysis. Nano Lett. 12, 5423–5430 (2012).

    CAS  Google Scholar 

  79. 79

    Han, B. et al. Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells. Energy Environ. Sci. 8, 258–266 (2015). This study reported the most active and stable performance of a size-controlled dealloyed PtNi3 core–shell nanoparticle catalyst during a realistic PEM fuel cell test.

    CAS  Google Scholar 

  80. 80

    Neyerlin, K. C. Srivastava, R., Yu, C. & Strasser, P. Electrochemical activity and stability of dealloyed Pt–Cu and Pt–Cu–Co electrocatalysts for the oxygen reduction reaction (ORR). J. Power Sources 186, 261–267 (2009).

    CAS  Google Scholar 

  81. 81

    Wu, J. B., Gross, A. & Yang, H. Shape and composition-controlled platinum alloy nanocrystals using carbon monoxide as reducing agent. Nano Lett. 11, 798–802 (2011).

    CAS  Google Scholar 

  82. 82

    Wu, J. et al. Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J. Am. Chem. Soc. 134, 11880–11883 (2012).

    CAS  Google Scholar 

  83. 83

    Kondratenko, E. V., Mul, G., Baltrusaitis, J., Larrazábal, G. O. & Pérez-Ramírez, J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 6, 3112–3135 (2013).

    CAS  Google Scholar 

  84. 84

    Hori, Y. in Modern Aspects of Electrochemistry (eds Vayenas, C. G., White, R. E. & Gamboa-Aldeco, M. E. ) 89–189 (Springer, 2008).

    Google Scholar 

  85. 85

    Costentin, C., Robert, M. & Savéant, J.-M. Catalysis of the electrochemical reduction of carbon dioxide. Chem. Soc. Rev. 42, 2423–2436 (2013).

    CAS  Google Scholar 

  86. 86

    Asadi, M. et al. Robust carbon dioxide reduction on molybdenum disulphide edges. Nat. Commun. 5, 4470 (2014).

    CAS  Google Scholar 

  87. 87

    Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).

    CAS  Google Scholar 

  88. 88

    Kuhl, K. P. et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136, 14107–14113 (2014).

    CAS  Google Scholar 

  89. 89

    Varela, A. S. et al. Metal-doped nitrogenated carbon as efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons. Angew. Chem. Int. Ed. Engl. 54, 10758–10762 (2015).

    CAS  Google Scholar 

  90. 90

    Peterson, A. A. & Nørskov, J. K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3, 251–258 (2012).

    CAS  Google Scholar 

  91. 91

    Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010).

    CAS  Google Scholar 

  92. 92

    Shi, C., Hansen, H. A., Lausche, A. C. & Nørskov, J. K. Trends in electrochemical CO2 reduction activity for open and close-packed metal surfaces. Phys. Chem. Chem. Phys. 16, 4720–4727 (2014).

    CAS  Google Scholar 

  93. 93

    Hansen, H. A., Varley, J. B., Peterson, A. A. & Nørskov, Understanding, J. K. Trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J. Phys. Chem. Lett. 4, 388–392 (2013).

    CAS  Google Scholar 

  94. 94

    Akhade, S. A. et al. Poisoning effect of adsorbed CO during CO2 electroreduction on late transition metals. Phys. Chem. Chem. Phys. 16, 20429–20435 (2014).

    CAS  Google Scholar 

  95. 95

    Hori, Y., Takahashi, I., Koga, O. & Hoshi, N. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J. Phys. Chem. B 106, 15–17 (2002).

    CAS  Google Scholar 

  96. 96

    Durand, W. J., Peterson, A. A., Studt, F., Abild-Pedersen, F. & Nørskov, J. K. Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces. Surf. Sci. 605, 1354–1359 (2011).

    CAS  Google Scholar 

  97. 97

    Schouten, K. J. P., Qin, Z., Gallent, E. P. & Koper, M. T. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J. Am. Chem. Soc. 134, 9864–9867 (2012).

    CAS  Google Scholar 

  98. 98

    Schouten, K., Kwon, Y., Van der Ham, C., Qin, Z. & Koper, M. T. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2, 1902–1909 (2011).

    CAS  Google Scholar 

  99. 99

    Montoya, J. H., Shi, C., Chan, K. & Norskov, J. K. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015).

    CAS  Google Scholar 

  100. 100

    Nie, X., Esopi, M. R., Janik, M. J. & Asthagiri, A. Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angew. Chem. Int. Ed. Engl. 52, 2459–2462 (2013).

    CAS  Google Scholar 

  101. 101

    Calle-Vallejo, F. and Koper, M. T. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem. Int. Ed. Engl. 125, 7423–7426 (2013).

    Google Scholar 

  102. 102

    Roldan Cuenya, B. Metal nanoparticle catalysts beginning to shape-up. Acc. Chem. Res. 46, 1682–1691 (2012).

    Google Scholar 

  103. 103

    Ono, L. K., Croy, J. R., Heinrich, H. & Roldan Cuenya, B. Oxygen chemisorption, formation, and thermal stability of Pt oxides on Pt nanoparticles supported on SiO2/Si(001): size effects. J. Phys. Chem. C 115, 16856–16866 (2011).

    CAS  Google Scholar 

  104. 104

    Ono, L. K. & Roldan Cuenya, B. Formation and thermal stability of Au2O3 on gold nanoparticles: size and support effects. J. Phys. Chem. C 112, 4676–4686 (2008).

    CAS  Google Scholar 

  105. 105

    Reske, R., Mistry, H., Behafarid, F., Roldan Cuenya, B. & Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 136, 6978–6986 (2014). This work unravels the particle size dependence of CO2 electroreduction over Cu using model micelle-synthesized nanoparticles.

    CAS  Google Scholar 

  106. 106

    Manthiram, K., Beberwyck, B. J. & Alivisatos, A. P. Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. J. Am. Chem. Soc. 136, 13319–13325 (2014).

    CAS  Google Scholar 

  107. 107

    Baturina, O. A. et al. CO2 electroreduction to hydrocarbons on carbon-supported Cu nanoparticles. ACS Catal. 4, 3682–3695 (2014).

    CAS  Google Scholar 

  108. 108

    Ono, L. K. & Cuenya, B. R. Effect of interparticle interaction on the low temperature oxidation of CO over size-selected Au nanocatalysts supported on ultrathin TiC films. Catal. Lett. 113, 86–94 (2007).

    CAS  Google Scholar 

  109. 109

    Mistry, H. et al. Tuning catalytic selectivity at the mesoscale via interparticle interactions. ACS Catal. 6, 1075–1080 (2015). This study describes how interparticle distance and nanoparticle size can be used to control activity and selectivity during CO2 electroreduction over Cu, providing important insights into mass transport and diffusion phenomena during this reaction on well dispersed nanostructured materials.

    Google Scholar 

  110. 110

    Roberts, F. S., Kuhl, K. P. & Nilsson, A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew. Chem. Int. Ed. Engl. 54, 5179–5182 (2015).

    CAS  Google Scholar 

  111. 111

    Chen, C. S. et al. Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals. Catal. Sci. Technol. 5, 161–168 (2015).

    CAS  Google Scholar 

  112. 112

    Back, S., Yeom, M. S. & Jung, Active, Y. Sites of Au and Ag nanoparticle catalysts for CO2 electroreduction to CO. ACS Catal. 5, 5089–5096 (2015).

    CAS  Google Scholar 

  113. 113

    Mistry, H. et al. Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J. Am. Chem. Soc. 136, 16473–16476 (2014).

    CAS  Google Scholar 

  114. 114

    Gao, D. et al. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 137, 4288–4291 (2015).

    CAS  Google Scholar 

  115. 115

    Zhu, W. et al. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 135, 16833–16836 (2013).

    CAS  Google Scholar 

  116. 116

    Zhu, W. et al. Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J. Am. Chem. Soc. 136, 16132–16135 (2014).

    CAS  Google Scholar 

  117. 117

    Li, C. W. & Kanan, M. W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 134, 7231–7234 (2012). This study introduced oxide-derived Cu as a new class of catalyst for CO2 electroreduction with considerably improved activity at low overpotentials.

    CAS  Google Scholar 

  118. 118

    Tang, W. et al. The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Phys. Chem. Chem. Phys. 14, 76–81 (2012).

    CAS  Google Scholar 

  119. 119

    Chen, Y., Li, C. W. & Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 134, 19969–19972 (2012).

    CAS  Google Scholar 

  120. 120

    Lu, Q. et al. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun. 5, 3242 (2014).

    Google Scholar 

  121. 121

    Sen, S., Liu, D. & Palmore, G. T. R. Electrochemical reduction of CO2 at copper nanofoams. ACS Catal. 4, 3091–3095 (2014).

    CAS  Google Scholar 

  122. 122

    Jia, F., Yu, X. & Zhang, L. Enhanced selectivity for the electrochemical reduction of CO2 to alcohols in aqueous solution with nanostructured Cu–Au alloy as catalyst. J. Power Sources 252, 85–89 (2014).

    CAS  Google Scholar 

  123. 123

    Esposito, D. V. et al. Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates. Angew. Chem. Int. Ed. Engl. 49, 9859–9862 (2010).

    CAS  Google Scholar 

  124. 124

    Bligaard, T. & Nørskov, J. K. Ligand effects in heterogeneous catalysis and electrochemistry. Electrochim. Acta 52, 5512–5516 (2007).

    CAS  Google Scholar 

  125. 125

    Januszewska, A., Jurczakowski, R. & Kulesza, P. J. CO2 electroreduction at bare and Cu-decorated Pd pseudomorphic layers: catalyst tuning by controlled and indirect supporting onto Au (111). Langmuir 30, 14314–14321 (2014).

    CAS  Google Scholar 

  126. 126

    Reske, R. et al. Controlling catalytic selectivities during CO2 electroreduction on thin Cu metal overlayers. J. Phys. Chem. Lett. 4, 2410–2413 (2013).

    CAS  Google Scholar 

  127. 127

    Varela, A. S. et al. CO2 electroreduction on well-defined bimetallic surfaces: Cu overlayers on Pt(111) and Pt(211). J. Phys. Chem. C 117, 20500–20508 (2013).

    CAS  Google Scholar 

  128. 128

    Friebel, D. et al. Structure, redox chemistry, and interfacial alloy formation in monolayer and multilayer Cu/Au (111) model catalysts for CO2 electroreduction. J. Phys. Chem. C 118, 7954–7961 (2014).

    CAS  Google Scholar 

  129. 129

    Schlaup, C., Horch, S. & Chorkendorff, I. On the stability of copper overlayers on Au (111) and Au (100) electrodes under low potential conditions and in the presence on CO and CO2 . Surf. Sci. 631, 155–164 (2015).

    CAS  Google Scholar 

  130. 130

    Kim, D., Resasco, J., Yu, Y., Asiri, A. M. & Yang, P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nat. Commun. 5, 5948 (2014).

    Google Scholar 

  131. 131

    Zhao, W., Yang, L., Yin, Y. & Jin, M. Thermodynamic controlled synthesis of intermetallic Au3Cu alloy nanocrystals from Cu microparticles. J. Mater. Chem. A 2, 902–906 (2014).

    CAS  Google Scholar 

  132. 132

    Christophe, J., Doneux, T. & Buess-Herman, C. Electroreduction of carbon dioxide on copper-based electrodes: activity of copper single crystals and copper–gold alloys. Electrocatalysis 3, 139–146 (2012).

    CAS  Google Scholar 

  133. 133

    Hirunsit, P. Electroreduction of carbon dioxide to methane on copper, copper–silver, and copper–gold catalysts: a DFT study. J. Phys. Chem. C 117, 8262–8268 (2013).

    CAS  Google Scholar 

  134. 134

    Kim, D. et al. Insights into an autonomously formed oxygen-evacuated Cu2O electrode for the selective production of C2H4 from CO2 . Phys. Chem. Chem. Phys. 17, 824–830 (2015).

    CAS  Google Scholar 

  135. 135

    Kas, R. et al. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. Phys. Chem. Chem. Phys. 16, 12194–12201 (2014).

    CAS  Google Scholar 

  136. 136

    Ren, D. et al. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal. 5, 2814–2821 (2015).

    CAS  Google Scholar 

  137. 137

    Verdaguer-Casadevall, A. et al. Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J. Am. Chem. Soc. 137, 9808–9811 (2015).

    CAS  Google Scholar 

  138. 138

    Feng, X., Jiang, K., Fan, S. & Kanan, M. W. Grain-boundary-dependent CO2 electroreduction activity. J. Am. Chem. Soc. 137, 4606–4609 (2015).

    CAS  Google Scholar 

  139. 139

    Frese, K. W. Electrochemical reduction of CO2 at intentionally oxidized copper electrodes. J. Electrochem. Soc. 138, 3338–3344 (1991).

    CAS  Google Scholar 

  140. 140

    Zhang, Y.-J. & Peterson, A. A. Oxygen-induced changes to selectivity-determining steps in electrocatalytic CO2 reduction. Phys. Chem. Chem. Phys. 17, 4505–4515 (2015).

    CAS  Google Scholar 

  141. 141

    Le, M. et al. Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces. J. Electrochem. Soc. 158, E45–E49 (2011).

    CAS  Google Scholar 

  142. 142

    Andrews, E. et al. Electrochemical reduction of CO2 at Cu nanocluster/(1010) ZnO electrodes. J. Electrochem. Soc. 160, H841–H846 (2013).

    CAS  Google Scholar 

  143. 143

    Behrens, M. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336, 893–897 (2012).

    CAS  Google Scholar 

  144. 144

    Gao, D. et al. pH effect on electrocatalytic reduction of CO2 over Pd and Pt nanoparticles. Electrochem. Commun. 55, 1–5 (2015).

    Google Scholar 

  145. 145

    Varela, A. S., Kroschel, M., Reier, T. & Strasser, P. Controlling the selectivity of CO2 electroreduction on copper: the effect of the electrolyte concentration and the importance of the local pH. Catal. Today 260, 8–13 (2016).

    CAS  Google Scholar 

  146. 146

    Hori, Y., Murata, A. & Takahashi, R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc., Faraday Trans. 1 85, 2309–2326 (1989).

    CAS  Google Scholar 

  147. 147

    Murata, A. & Hori, Y. Product selectivity affected by cationic species in electrochemical reduction of CO2 and Co at a Cu electrode. Bull. Chem. Soc. Japan 64, 123–127 (1991).

    CAS  Google Scholar 

  148. 148

    Hori, Y., Takahashi, R., Yoshinami, Y. & Murata, A. Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B 101, 7075–7081 (1997).

    CAS  Google Scholar 

  149. 149

    Schouten, K. J. P., Gallent, E. P. & Koper, M. T. The influence of pH on the reduction of CO and CO2 to hydrocarbons on copper electrodes. J. Electroanal. Chem. 716, 53–57 (2014).

    CAS  Google Scholar 

  150. 150

    Schouten, K. J. P., Gallent, E. P. & Koper, M. T. The electrochemical characterization of copper single-crystal electrodes in alkaline media. J. Electroanal. Chem. 699, 6–9 (2013).

    CAS  Google Scholar 

  151. 151

    Koper, M. T. Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chem. Sci. 4, 2710–2723 (2013).

    CAS  Google Scholar 

  152. 152

    Gupta, N., Gattrell, M. & MacDougall, B. Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. J. Appl. Electrochem. 36, 161–172 (2006).

    CAS  Google Scholar 

  153. 153

    Colmati, F. et al. Surface structure effects on the electrochemical oxidation of ethanol on platinum single crystal electrodes. Faraday Discuss. 140, 379–397 (2009).

    Google Scholar 

  154. 154

    Lai, S. C. & Koper, M. T. Electro-oxidation of ethanol and acetaldehyde on platinum single-crystal electrodes. Faraday Discuss. 140, 399–416 (2009).

    Google Scholar 

  155. 155

    Colmati, F. et al. The role of the steps in the cleavage of the C–C bond during ethanol oxidation on platinum electrodes. Phys. Chem. Chem. Phys. 11, 9114–9123 (2009).

    CAS  Google Scholar 

  156. 156

    Lai, S. C. & Koper, M. T. The influence of surface structure on selectivity in the ethanol electro-oxidation reaction on platinum. J. Phys. Chem. Lett. 1, 1122–1125 (2010).

    CAS  Google Scholar 

  157. 157

    Del Colle, V., Berna, A., Tremiliosi-Filho, G., Herrero, E. & Feliu, J. Ethanol electrooxidation onto stepped surfaces modified by Ru deposition: electrochemical and spectroscopic studies. Phys. Chem. Chem. Phys. 10, 3766–3773 (2008).

    CAS  Google Scholar 

  158. 158

    Lai, S. C. & Koper, M. T. Ethanol electro-oxidation on platinum in alkaline media. Phys. Chem. Chem. Phys. 11, 10446–10456 (2009).

    CAS  Google Scholar 

  159. 159

    Zhou, Z. Y. et al. High-index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol electrooxidation. Angew. Chem. Int. Ed. Engl. 49, 411–414 (2010).

    CAS  Google Scholar 

  160. 160

    Tian, N., Zhou, Z.-Y., Sun, S.-G., Ding, Y. & Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316, 732–735 (2007).

    CAS  Google Scholar 

  161. 161

    Tian, N., Zhou, Z.-Y., Yu, N.-F., Wang, L.-Y. & Sun, S.-G. Direct electrodeposition of tetrahexahedral Pd nanocrystals with high-index facets and high catalytic activity for ethanol electrooxidation. J. Am. Chem. Soc. 132, 7580–7581 (2010).

    CAS  Google Scholar 

  162. 162

    Zhou, W. et al. Pt based anode catalysts for direct ethanol fuel cells. Appl. Catal. B 46, 273–285 (2003).

    CAS  Google Scholar 

  163. 163

    Lamy, C., Rousseau, S., Belgsir, E., Coutanceau, C. & Léger, J.-M. Recent progress in the direct ethanol fuel cell: development of new platinum–tin electrocatalysts. Electrochim. Acta 49, 3901–3908 (2004).

    CAS  Google Scholar 

  164. 164

    Du, W. et al. Platinum–tin oxide core–shell catalysts for efficient electro-oxidation of ethanol. J. Am. Chem. Soc. 136, 10862–10865 (2014).

    CAS  Google Scholar 

  165. 165

    Erini, N. et al. Exceptional activity of a Pt–Rh–Ni ternary nanostructured catalyst for the electrochemical oxidation of ethanol. ChemElectroChem 2, 903–908 (2015).

    CAS  Google Scholar 

  166. 166

    Erini, N. et al. Ethanol electro-oxidation on ternary platinum–rhodium–tin nanocatalysts: insights in the atomic 3D structure of the active catalytic phase. ACS Catal. 4, 1859–1867 (2014).

    CAS  Google Scholar 

  167. 167

    Kowal, A. et al. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2 . Nat. Mater. 8, 325–330 (2009). This study reports on a PtRhSnO2/C ethanol electro-oxidation catalyst with high efficiency for C–C bond breaking at low overpotentials, with key insights into the mechanisms behind the improved performance of these catalysts.

    CAS  Google Scholar 

  168. 168

    Erini, N. et al. Comparative assessment of synthetic strategies toward active platinum–rhodium–tin electrocatalysts for efficient ethanol electro-oxidation. J. Power Sources 294, 299–304 (2015).

    CAS  Google Scholar 

  169. 169

    Li, M. et al. Ethanol oxidation on the ternary Pt–Rh–SnO2/C electrocatalysts with varied Pt:Rh:Sn ratios. Electrochim. Acta 55, 4331–4338 (2010).

    CAS  Google Scholar 

  170. 170

    Du, W. et al. Ternary PtSnRh–SnO2 nanoclusters: synthesis and electroactivity for ethanol oxidation fuel cell reaction. J. Mater. Chem. 21, 8887–8892 (2011).

    CAS  Google Scholar 

  171. 171

    Li, M. et al. Ternary electrocatalysts for oxidizing ethanol to carbon dioxide: making Ir capable of splitting C–C bond. J. Am. Chem. Soc. 135, 132–141 (2012).

    Google Scholar 

  172. 172

    Li, M., Liu, P. & Adzic, R. R. Platinum monolayer electrocatalysts for anodic oxidation of alcohols. J. Phys. Chem. Lett. 3, 3480–3485 (2012).

    CAS  Google Scholar 

  173. 173

    Loukrakpam, R. et al. Efficient C–C bond splitting on Pt monolayer and sub-monolayer catalysts during ethanol electrooxidation: Pt layer strain and morphology effects. Phys. Chem. Chem. Phys. 16, 18866–18876 (2014).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Science Foundation (NSF-Chemistry 1213182 and NSF-DMR-1207065) and the Office of Basic Energy Sciences of the US Department of Energy (DE-FG02-08ER15995). Financial assistance from the Cluster of Excellence RESOLV at RUB (EXC 1069) funded by the Deutsche Forschungsgemeinschaft is also greatly appreciated. Portions of this work received funding from the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF) under the grant #03SF0433A “MEOKATS” and #03SF0523A “CO2EKAT”. S.K. acknowledges financial support by the German Research Foundation (DFG) through grant STR 596/5-1. B.R.C. and P.S. thank the European Community for partial funding under the flagship “Climate KIC/EnCO2re” program (Horizon2020).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Peter Strasser or Beatriz Roldan Cuenya.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mistry, H., Varela, A., Kühl, S. et al. Nanostructured electrocatalysts with tunable activity and selectivity. Nat Rev Mater 1, 16009 (2016). https://doi.org/10.1038/natrevmats.2016.9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing