Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

In vivo imaging of translocator protein, a marker of activated microglia, in alcohol dependence

Abstract

Neuroinflammation may be a critical component of the neurobiology of alcohol use disorders, yet the exact nature of this relationship is not well understood. This work compared the brain and peripheral immune profile of alcohol-dependent subjects and controls. Brain levels of 18-kDa translocator protein (TSPO), a marker of microglial activation and neuroinflammation, were measured with [11C]PBR28 positron emission tomography imaging in 15 healthy controls and 15 alcohol-dependent subjects. Alcohol-dependent subjects were imaged 1–4 days (n=14) or 24 days (n=1) after their last drink. Linear mixed modeling of partial-volume-corrected [11C]PBR28 data revealed a main effect of alcohol dependence (P=0.034), corresponding to 10% lower TSPO levels in alcohol-dependent subjects. Within this group, exploratory analyses found a negative association of TSPO levels in the hippocampus and striatum with alcohol dependence severity (P<0.035). Peripheral immune response was assessed in a subset of subjects by measuring cytokine expression from monocytes cultured both in the presence and absence of lipopolysaccharide. Peripheral monocyte response to lipopolysaccharide stimulation was lower in alcohol-dependent subjects compared with controls for the proinflammatory cytokines interleukin-6 and interleukin-8. Thus, alcohol-dependent individuals exhibited less activated microglia in the brain and a blunted peripheral proinflammatory response compared with controls. These findings suggest a role for pharmaceuticals tuning the neuroimmune system as therapeutics for alcohol dependence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. World Health Organization. Global Status Report on Alcohol and Health. World Health Organization: Geneva, Switzerland, 2014.

  2. Nelson S, Kolls JK . Alcohol, host defence and society. Nat Rev Immunol 2002; 2: 205–209.

    Article  CAS  Google Scholar 

  3. Szabo G, Mandrekar P . A recent perspective on alcohol, immunity, and host defense. Alcohol Clin Exp Res 2009; 33: 220–232.

    Article  CAS  Google Scholar 

  4. Sullivan EV, Pfefferbaum A . Neurocircuitry in alcoholism: a substrate of disruption and repair. Psychopharmacology 2005; 180: 583–594.

    Article  CAS  Google Scholar 

  5. Crews FT, Vetreno RP . Mechanisms of neuroimmune gene induction in alcoholism. Psychopharmacology 2016; 233: 1543–1557.

    Article  CAS  Google Scholar 

  6. Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL . MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med 2011; 17: 64–70.

    Article  CAS  Google Scholar 

  7. Chan WY, Kohsaka S, Rezaie P . The origin and cell lineage of microglia: new concepts. Brain Res Rev 2007; 53: 344–354.

    Article  CAS  Google Scholar 

  8. Tambuyzer BR, Ponsaerts P, Nouwen EJ . Microglia: gatekeepers of central nervous system immunology. J Leukoc Biol 2009; 85: 352–370.

    Article  CAS  Google Scholar 

  9. Chen SK, Tvrdik P, Peden E, Cho S, Wu S, Spangrude G et al. Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 2010; 141: 775–785.

    Article  CAS  Google Scholar 

  10. van Gool WA, van de Beek D, Eikelenboom P . Systemic infection and delirium: when cytokines and acetylcholine collide. Lancet 2010; 375: 773–775.

    Article  CAS  Google Scholar 

  11. Block ML, Zecca L, Hong JS . Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 2007; 8: 57–69.

    Article  CAS  Google Scholar 

  12. McNally L, Bhagwagar Z, Hannestad J . Inflammation, glutamate, and glia in depression: a literature review. CNS Spectr 2008; 13: 501–510.

    Article  Google Scholar 

  13. Yakovleva T, Bazov I, Watanabe H, Hauser KF, Bakalkin G . Transcriptional control of maladaptive and protective responses in alcoholics: a role of the NF-κB system. Brain Behav Immun 2011; 25 (Suppl 1): S29–S38.

    Article  CAS  Google Scholar 

  14. Li L, Lu J, Tay SS, Moochhala SM, He BP . The function of microglia, either neuroprotection or neurotoxicity, is determined by the equilibrium among factors released from activated microglia in vitro. Brain Res 2007; 1159: 8–17.

    Article  CAS  Google Scholar 

  15. Hanisch UK, Kettenmann H . Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 2007; 10: 1387–1394.

    Article  CAS  Google Scholar 

  16. Marshall SA, McClain JA, Kelso ML, Hopkins DM, Pauly JR, Nixon K . Microglial activation is not equivalent to neuroinflammation in alcohol-induced neurodegeneration: the importance of microglia phenotype. Neurobiol Dis 2013; 54: 239–251.

    Article  CAS  Google Scholar 

  17. Hurley LL, Tizabi Y . Neuroinflammation, neurodegeneration, and depression. Neurotox Res 2013; 23: 131–144.

    Article  CAS  Google Scholar 

  18. Streit WJ, Mrak RE, Griffin WST . Microglia and neuroinflammation: a pathological perspective. J Neuroinflamm 2004; 1: 14.

    Article  Google Scholar 

  19. Ray LA, Roche DJ, Heinzerling K, Shoptaw S . Opportunities for the development of neuroimmune therapies in addiction. Int Rev Neurobiol 2014; 118: 381–401.

    Article  Google Scholar 

  20. Sandiego CM, Gallezot J-D, Pittman B, Nabulsi N, Lim K, Lin S-F et al. Imaging robust microglial activation after lipopolysaccharide administration in humans with PET. Proc Natl Acad Sci USA 2015; 112: 12468–12473.

    Article  CAS  Google Scholar 

  21. Rupprecht R, Papadopoulos V, Rammes G, Baghai TC, Fan J, Akula N et al. Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov 2010; 9: 971–988.

    Article  CAS  Google Scholar 

  22. Cosenza-Nashat M, Zhao ML, Suh HS, Morgan J, Natividad R, Morgello S et al. Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol 2009; 35: 306–328.

    Article  CAS  Google Scholar 

  23. Liu GJ, Middleton RJ, Hatty CR, Kam WWY, Chan R, Pham T et al. The 18 kDa translocator protein, microglia and neuroinflammation. Brain Pathol 2014; 24: 631–653.

    Article  CAS  Google Scholar 

  24. Owen DR, Matthews PM . Imaging brain microglial activation using positron emission tomography and translocator protein-specific radioligands. Int Rev Neurobiol 2011; 101: 19–39.

    Article  CAS  Google Scholar 

  25. Kreisl WC, Lyoo CH, McGwier M, Snow J, Jenko KJ, Kimura N et al. In vivo radioligand binding to translocator protein correlates with severity of Alzheimer's disease. Brain 2013; 136 (Part 7): 2228–2238.

    Article  Google Scholar 

  26. Oh U, Fujita M, Ikonomidou VN, Evangelou IE, Matsuura E, Harberts E et al. Translocator protein PET imaging for glial activation in multiple sclerosis. J Neuroimmune Pharmacol 2011; 6: 354–361.

    Article  Google Scholar 

  27. Park E, Gallezot JD, Delgadillo A, Liu S, Planeta B, Lin SF et al. 11C-PBR28 imaging in multiple sclerosis patients and healthy controls: test-retest reproducibility and focal visualization of active white matter areas. Eur J Nucl Med Mol Imaging 2015; 42: 1081–1092.

    Article  CAS  Google Scholar 

  28. Hirvonen J, Kreisl WC, Fujita M, Dustin I, Khan O, Appel S et al. Increased in vivo expression of an inflammatory marker in temporal lobe epilepsy. J Nucl Med 2012; 53: 234–240.

    Article  CAS  Google Scholar 

  29. Crews FT, Qin L, Sheedy D, Vetreno RP, Zou J . High mobility group box 1/Toll-like receptor danger signaling increases brain neuroimmune activation in alcohol dependence. Biol Psychiatry 2013; 73: 602–612.

    Article  CAS  Google Scholar 

  30. He J, Crews FT . Increased MCP-1 and microglia in various regions of the human alcoholic brain. Exp Neurol 2008; 210: 349–358.

    Article  CAS  Google Scholar 

  31. Sullivan ED, Deshmukh A, De Rosa E, Rosenbloom MJ, Pfefferbaum A . Striatal and forebrain nuclei volumes: contribution to motor function and working memory deficits in alcoholism. Biol Psychiatry 2005; 57: 768–776.

    Article  Google Scholar 

  32. Makris N, Oscar-Berman M, Jaffin SK, Hodge SM, Kennedy DN, Caviness VS et al. Decreased volume of the brain reward system in alcoholism. Biol Psychiatry 2008; 64: 192–202.

    Article  CAS  Google Scholar 

  33. Geil CR, Hayes DM, McClain JA, Liput DJ, Marshall SA, Chen KY et al. Alcohol and adult hippocampal neurogenesis: promiscuous drug, wanton effects. Prog Neuropsychopharmacol Biol Psychiatry 2014; 54: 103–113.

    Article  CAS  Google Scholar 

  34. Cunningham C . Microglia and neurodegeneration: the role of systemic inflammation. Glia 2013; 61: 71–90.

    Article  Google Scholar 

  35. Mosser DM, Edwards JP . Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008; 8: 958–969.

    Article  CAS  Google Scholar 

  36. Mandrekar P, Bala S, Catalano D, Kodys K, Szabo G . The opposite effects of acute and chronic alcohol on lipopolysaccharide-induced inflammation are linked to IRAK-M in human monocytes. J Immunol 2009; 183: 1320–1327.

    Article  CAS  Google Scholar 

  37. Mandrekar P, Catalano D, White B, Szabo G . Moderate alcohol intake in humans attenuates monocyte inflammatory responses: inhibition of nuclear regulatory factor kappa B and induction of interleukin 10. Alcohol Clin Exp Res 2006; 30: 135–139.

    Article  CAS  Google Scholar 

  38. Hannestad J, DellaGioia N, Gallezot J-D, Lim K, Nabulsi N, Esterlis I et al. The neuroinflammation marker translocator protein is not elevated in individuals with mild-to-moderate depression: a [11C]PBR28 PET study. Brain Behav Immun 2013; 33: 131–138.

    Article  CAS  Google Scholar 

  39. Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab 2012; 32: 1–5.

    Article  CAS  Google Scholar 

  40. Chauveau F, Boutin H, Van Camp N, Dolle F, Tavitian B . Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. Eur J Nucl Med Mol Imag 2008; 35: 2304–2319.

    Article  Google Scholar 

  41. Skinner HA, Allen BA . Alcohol dependence syndrome: measurement and validation. J Abnorm Psychol 1982; 91: 199.

    Article  CAS  Google Scholar 

  42. Singleton E, Henningfield J, Tiffany S . Alcohol Craving Questionnaire: ACQ-Now: Background and Administration Manual. NIDA Addiction Research Centre: Baltimore, MD, USA, 1994.

    Google Scholar 

  43. Sobell LC, Sobell MB . Timeline Follow-Back. Measuring Alcohol Consumption. Springer: Berlin, Germany, 1992, pp 41–72.

    Book  Google Scholar 

  44. Carson RE, Barker WC, Liow J-S, Johnson CA . Design of a motion-compensation OSEM list-mode algorithm for resolution-recovery reconstruction for the HRRT. IEEE Nucl Sci Conf Rec 2003; 5: 3281–3285.

    Google Scholar 

  45. Giovacchini G, Lerner A, Toczek MT, Fraser C, Ma K, DeMar JC et al. Brain incorporation of 11C-arachidonic acid, blood volume, and blood flow in healthy aging: a study with partial-volume correction. J Nucl Med 2004; 45: 1471–1479.

    CAS  PubMed  Google Scholar 

  46. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 2007; 27: 1533–1539.

    Article  CAS  Google Scholar 

  47. Ichise M, Liow JS, Lu JQ, Takano A, Model K, Toyama H et al. Linearized reference tissue parametric imaging methods: application to [11C]DASB positron emission tomography studies of the serotonin transporter in human brain. J Cereb Blood Flow Metab 2003; 23: 1096–1112.

    Article  Google Scholar 

  48. Alfonso-Loeches S, Pascual-Lucas M, Blanco AM, Sanchez-Vera I, Guerri C . Pivotal role of TLR4 receptors in alcohol-induced neuroinflammation and brain damage. J Neurosci 2010; 30: 8285–8295.

    Article  CAS  Google Scholar 

  49. Pandey SC, Roy A, Mittal N . Effects of chronic ethanol intake and its withdrawal on the expression and phosphorylation of the CREB gene transcription factor in rat cortex. J Pharmacol Exp Ther 2001; 296: 857–868.

    CAS  PubMed  Google Scholar 

  50. Qin L, Crews FT . NADPH oxidase and reactive oxygen species contribute to alcohol-induced microglial activation and neurodegeneration. J Neuroinflamm 2012; 9: 5–9.

    CAS  Google Scholar 

  51. Vetreno RP, Qin L, Crews FT . Increased receptor for advanced glycation end product expression in the human alcoholic prefrontal cortex is linked to adolescent drinking. Neurobiol Dis 2013; 59: 52–62.

    Article  CAS  Google Scholar 

  52. Zhao Y-N, Wang F, Fan Y-X, Ping G-F, Yang J-Y, Wu C-F . Activated microglia are implicated in cognitive deficits, neuronal death, and successful recovery following intermittent ethanol exposure. Behav Brain Res 2013; 236: 270–282.

    Article  CAS  Google Scholar 

  53. Marshall SA, Geil CR, Nixon K . Prior binge ethanol exposure potentiates the microglial response in a model of alcohol-induced neurodegeneration. Brain Sci 2016; 6: 16.

    Article  Google Scholar 

  54. Ward RJ, Colivicchi MA, Allen R, Schol F, Lallemand F, De Witte P et al. Neuro‐inflammation induced in the hippocampus of ‘binge drinking’rats may be mediated by elevated extracellular glutamate content. J Neurochem 2009; 111: 1119–1128.

    Article  CAS  Google Scholar 

  55. Perry VH, Holmes C . Microglial priming in neurodegenerative disease. Nat Rev Neurol 2014; 10: 217–224.

    Article  CAS  Google Scholar 

  56. Kalk NJ, Guo Q, Owen DR, Waldman A, Dar K, Gunn RN et al. Hippocampal microglial dysfunction in alcohol dependence: a [C-11]PBR28 positron emission tomography (PET) study. Alcohol Clin Exp Res 2014; 38: 090A.

    Article  Google Scholar 

  57. Streit WJ, Xue QS, Tischer J, Bechmann I . Microglial pathology. Acta Neuropathol Commun 2014; 2: 142.

    Article  Google Scholar 

  58. Owen DR, Guo Q, Kalk NJ, Colasanti A, Kalogiannopoulou D, Dimber R et al. Determination of [11C]PBR28 binding potential in vivo: a first human TSPO blocking study. J Cereb Blood Flow Metab 2014; 34: 989–994.

    Article  CAS  Google Scholar 

  59. Chen M-K, Guilarte TR . Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol Ther 2008; 118: 1–17.

    Article  CAS  Google Scholar 

  60. Lavisse S, Guillermier M, Hérard A-S, Petit F, Delahaye M, Van Camp N et al. Reactive astrocytes overexpress TSPO and are detected by TSPO positron emission tomography imaging. J Neurosci 2012; 32: 10809–10818.

    Article  CAS  Google Scholar 

  61. Hannestad J, Gallezot J-D, Schafbauer T, Lim K, Kloczynski T, Morris ED et al. Endotoxin-induced systemic inflammation activates microglia: [11C]PBR28 positron emission tomography in nonhuman primates. Neuroimage 2012; 63: 232–239.

    Article  CAS  Google Scholar 

  62. Elmore Monica RP, Najafi Allison R, Koike Maya A, Dagher Nabil N, Spangenberg Elizabeth E, Rice Rachel A et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 2014; 82: 380–397.

    Article  CAS  Google Scholar 

  63. Jucaite A, Svenningsson P, Rinne JO, Cselényi Z, Varnäs K, Johnström P et al. Effect of the myeloperoxidase inhibitor AZD3241 on microglia: a PET study in Parkinson’s disease. Brain 2015; 138: 2687–2700.

    Article  Google Scholar 

  64. Sekine Y, Ouchi Y, Sugihara G, Takei N, Yoshikawa E et al. Methamphetamine causes microglial activation in the brains of human abusers. J Neurosci 2008; 28: 5756–5761.

    Article  CAS  Google Scholar 

  65. Narendran R, Frankle WG . Comment on analyses and conclusions of 'microglial activity in people at ultra high risk of psychosis and in schizophrenia: an [11C]PBR28 PET brain imaging study. Am J Psychiatry 2016; 173: 536–537.

    Article  Google Scholar 

  66. Narendran R, Lopresti BJ, Mason NS, Deuitch L, Paris J, Himes ML et al. Cocaine abuse in humans is not associated with increased microglial activation: an 18-kDa translocator protein positron emission tomography imaging study with [11C]PBR28. J Neurosci 2014; 34: 9945–9950.

    Article  Google Scholar 

  67. Guan YZ, Jin XD, Guan LX, Yan HC, Wang P, Gong Z et al. Nicotine inhibits microglial proliferation and is neuroprotective in global ischemia rats. Mol Neurobiol 2015; 51: 1480–1488.

    Article  CAS  Google Scholar 

  68. Khanna A, Guo M, Mehra M, Royal W . Inflammation and oxidative stress induced by cigarette smoke in Lewis rats. J Neuroimmunol 2013; 254: 69–75.

    Article  CAS  Google Scholar 

  69. Bloomfield PS, Selvaraj S, Veronese M, Rizzo G, Bertoldo A, Owen DR et al. Microglial activity in people at ultra high risk of psychosis and in schizophrenia: an [11C]PBR28 PET brain imaging study. Am J Psychiatry 2016; 173: 44–52.

    Article  Google Scholar 

  70. Coughlin JM, Wang Y, Ma S, Yue C, Kim PK, Adams AV et al. Regional brain distribution of translocator protein using [11C]DPA-713 PET in individuals infected with HIV. J Neurovirol 2014; 20: 219–232.

    Article  CAS  Google Scholar 

  71. Loggia ML, Chonde DB, Akeju O, Arabasz G, Catana C, Edwards RR et al. Evidence for brain glial activation in chronic pain patients. Brain 2015; 138: 604–615.

    Article  Google Scholar 

  72. Oscar-Berman M, Marinkovic K . Alcohol: effects on neurobehavioral functions and the brain. Neuropsychol Rev 2007; 17: 239.

    Article  Google Scholar 

  73. Beck A, Wustenberg T, Genauck A, Wrase J, Schlagenhauf F, Smokla MN et al. Effect of brain structure, brain function, and brain connectivity on relapse in alcohol-dependent patients. Arch Gen Psychiatry 2012; 69: 842–852.

    Article  Google Scholar 

  74. Fein G, Sclafani V, Cardenas V, Goldmann H, Tolou‐Shams M, Meyerhoff DJ . Cortical gray matter loss in treatment‐naive alcohol dependent individuals. Alcohol Clin Exp Res 2002; 26: 558–564.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Laso FJ, Vaquero JM, Almeida J, Marcos M, Orfao A . Production of inflammatory cytokines by peripheral blood monocytes in chronic alcoholism: relationship with ethanol intake and liver disease. Cytom B 2007; 72: 408–415.

    Article  Google Scholar 

  76. Leclercq S, De Saeger C, Delzenne N, de Timary P, Stärkel P . Role of inflammatory pathways, blood mononuclear cells, and gut-derived bacterial products in alcohol dependence. Biol Psychiatry 2014; 76: 725–733.

    Article  CAS  Google Scholar 

  77. Setiawan E, Wilson AA, Mizrahi R, Rusjan PM, Miler L, Rajkowska G et al. Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiatry 2015; 72: 268–275.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the staff at the Yale PET center for their expertise and support of radiochemistry and imaging. We also thank Jon Mikael Anderson and the staff at the Clinical Neuroscience Research Unit at the Connecticut Mental Health Center for assistance with subject monitoring and evaluation. Dr Lesley Devine provided critical support for cytokine assay. We express our gratitude to Drs Betsy Bradshaw and Jean-Dominique Gallezot for insightful technical discussions. We gratefully acknowledge the funding support of the National Institute on Alcohol Abuse and Alcoholism (R21AA021866; K05AA014715), the National Institute on Drug Abuse (T32DA022975; K02DA031750) and the State of Connecticut Support for the Clinical Neuroscience Research Unit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K P Cosgrove.

Ethics declarations

Competing interests

JH was a full-time employee of UCB Pharma at the time this study was planned and conducted. KCO’C was speaking honoraria at Genentech, EMD Serono and a consultant at NeuroPhage Pharmaceuticals, Scitemex. Although not directly relevant to the reported work, SSO’M reports the following: donated study medications from AstraZeneca, Pfizer; consultant or advisory board member at Alkermes, Cerecor, Opiant; Scientific Review Group, Hazelden Betty Ford Foundation; member of the American Society of Clinical Pharmacology Alcohol Clinical Trials Initiative supported by Ethypharm, Lilly, Lundbeck, Otsuka, Pfizer, Arbor Pharmaceuticals, Indivior. The remaining authors declare no conflicts of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hillmer, A., Sandiego, C., Hannestad, J. et al. In vivo imaging of translocator protein, a marker of activated microglia, in alcohol dependence. Mol Psychiatry 22, 1759–1766 (2017). https://doi.org/10.1038/mp.2017.10

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2017.10

This article is cited by

Search

Quick links