Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Effects of glutamate positive modulators on cognitive deficits in schizophrenia: a systematic review and meta-analysis of double-blind randomized controlled trials

Subjects

Abstract

Hypofunction of N-methyl-d-aspartate (NMDA) receptors has been proposed to have an important role in the cognitive impairments observed in schizophrenia. Although glutamate modulators may be effective in reversing such difficult-to-treat conditions, the results of individual studies thus far have been inconsistent. We conducted a systematic review and meta-analysis to examine whether glutamate positive modulators have beneficial effects on cognitive functions in patients with schizophrenia. A literature search was conducted to identify double-blind randomized placebo-controlled trials in schizophrenia or related disorders, using Embase, Medline, and PsycINFO (last search: February 2015). The effects of glutamate positive modulators on cognitive deficits were evaluated for overall cognitive function and eight cognitive domains by calculating standardized mean differences (SMDs) between active drugs and placebo added to antipsychotics. Seventeen studies (N=1391) were included. Glutamate positive modulators were not superior to placebo in terms of overall cognitive function (SMD=0.08, 95% confidence interval=−0.06 to 0.23) (11 studies, n=858) nor each of eight cognitive domains (SMDs=−0.03 to 0.11) (n=367–940) in this population. Subgroup analyses by diagnosis (schizophrenia only studies), concomitant antipsychotics, or pathway of drugs to enhance the glutamatergic neurotransmission (glycine allosteric site of NMDA receptors or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors) suggested no procognitive effect of glutamate positive modulators. Further, no effect was found in individual compounds on cognition. In conclusion, glutamate positive modulators may not be effective in reversing overall cognitive impairments in patients with schizophrenia as adjunctive therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Green MF, Nuechterlein KH . Should schizophrenia be treated as a neurocognitive disorder? Schizophr Bull 1999; 25: 309–319.

    Article  CAS  PubMed  Google Scholar 

  2. Corigliano V, De Carolis A, Trovini G, Dehning J, Di Pietro S, Curto M et al. Neurocognition in schizophrenia: from prodrome to multi-episode illness. Psychiatry Res 2014; 220: 129–134.

    Article  PubMed  Google Scholar 

  3. Ventura J, Hellemann GS, Thames AD, Koellner V, Nuechterlein KH . Symptoms as mediators of the relationship between neurocognition and functional outcome in schizophrenia: a meta-analysis. Schizophr Res 2009; 113: 189–199.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Javitt DC . Treatment of negative and cognitive symptoms. Curr Psychiatry Rep 1999; 1: 25–30.

    Article  CAS  PubMed  Google Scholar 

  5. Cascade EF, Kalali AH, Lieberman J, Hsiao J, Keefe R, Stroup S . Use of antipsychotics pre- and post-dissemination of CATIE data. Psychiatry (Edgmont) 2007; 4: 21–23.

    Google Scholar 

  6. Goldberg TE, Goldman RS, Burdick KE, Malhotra AK, Lencz T, Patel RC et al. Cognitive improvement after treatment with second-generation antipsychotic medications in first-episode schizophrenia: is it a practice effect? Arch Gen Psychiatry 2007; 64: 1115–1122.

    Article  CAS  PubMed  Google Scholar 

  7. Ayesa-Arriola R, Rodriguez-Sanchez JM, Perez-Iglesias R, Gonzalez-Blanch C, Pardo-Garcia G, Tabares-Seisdedos R et al. The relevance of cognitive, clinical and premorbid variables in predicting functional outcome for individuals with first-episode psychosis: a 3 year longitudinal study. Psychiatry Res 2013; 209: 302–308.

    Article  PubMed  Google Scholar 

  8. Olney JW, Farber NB . Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 1995; 52: 998–1007.

    Article  CAS  PubMed  Google Scholar 

  9. Coyle JT . The glutamatergic dysfunction hypothesis for schizophrenia. Harv Rev Psychiatry 1996; 3: 241–253.

    Article  CAS  PubMed  Google Scholar 

  10. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 1994; 51: 199–214.

    CAS  PubMed  Google Scholar 

  11. Malhotra AK, Pinals DA, Weingartner H, Sirocco K, Missar CD, Pickar D et al. NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology 1996; 14: 301–307.

    Article  CAS  PubMed  Google Scholar 

  12. Lieberman JA, Bymaster FP, Meltzer HY, Deutch AY, Duncan GE, Marx CE et al. Antipsychotic drugs: comparison in animal models of efficacy, neurotransmitter regulation, and neuroprotection. Pharmacol Rev 2008; 60: 358–403.

    Article  CAS  PubMed  Google Scholar 

  13. Malhotra AK, Pinals DA, Adler CM, Elman I, Clifton A, Pickar D et al. Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology 1997; 17: 141–150.

    CAS  PubMed  Google Scholar 

  14. Ibrahim HM, Hogg AJ Jr, Healy DJ, Haroutunian V, Davis KL, Meador-Woodruff JH . Ionotropic glutamate receptor binding and subunit mRNA expression in thalamic nuclei in schizophrenia. Am J Psychiatry 2000; 157: 1811–1823.

    Article  CAS  PubMed  Google Scholar 

  15. Meador-Woodruff JH, Healy DJ . Glutamate receptor expression in schizophrenic brain. Brain Res Brain Res Rev 2000; 31: 288–294.

    Article  CAS  PubMed  Google Scholar 

  16. Javitt DC, Liederman E, Cienfuegos A, Shelley AM . Panmodal processing imprecision as a basis for dysfunction of transient memory storage systems in schizophrenia. Schizophr Bull 1999; 25: 763–775.

    Article  CAS  PubMed  Google Scholar 

  17. Heresco-Levy U, Javitt DC . Comparative effects of glycine and D-cycloserine on persistent negative symptoms in schizophrenia: a retrospective analysis. Schizophr Res 2004; 66: 89–96.

    Article  PubMed  Google Scholar 

  18. Diaz P, Bhaskara S, Dursun SM, Double-blind Deakin B . Placebo-controlled, crossover trial of clozapine plus glycine in refractory schizophrenia negative results. J Clin Psychopharmacol 2005; 25: 277–278.

    Article  PubMed  Google Scholar 

  19. Kantrowitz JT, Malhotra AK, Cornblatt B, Silipo G, Balla A, Suckow RF et al. High dose D-serine in the treatment of schizophrenia. Schizophr Res 2010; 121: 125–130.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ahmed AO, Bhat IA . Psychopharmacological treatment of neurocognitive deficits in people with schizophrenia: a review of old and new targets. CNS Drugs 2014; 28: 301–318.

    Article  CAS  PubMed  Google Scholar 

  21. Lane HY, Lin CH, Huang YJ, Liao CH, Chang YC, Tsai GE . A randomized, double-blind, placebo-controlled comparison study of sarcosine (N-methylglycine) and D-serine add-on treatment for schizophrenia. Int J Neuropsychopharmacol 2010; 13: 451–460.

    Article  CAS  PubMed  Google Scholar 

  22. Lane HY, Lin CH, Green MF, Hellemann G, Huang CC, Chen PW et al. Add-on treatment of benzoate for schizophrenia: a randomized, double-blind, placebo-controlled trial of D-amino acid oxidase inhibitor. JAMA Psychiatry 2013; 70: 1267–1275.

    Article  CAS  PubMed  Google Scholar 

  23. Goff DC, Lamberti JS, Leon AC, Green MF, Miller AL, Patel J et al. A placebo-controlled add-on trial of the Ampakine, CX516, for cognitive deficits in schizophrenia. Neuropsychopharmacology 2008; 33: 465–472.

    Article  CAS  PubMed  Google Scholar 

  24. Tsai GE, Lin PY . Strategies to enhance N-methyl-D-aspartate receptor-mediated neurotransmission in schizophrenia, a critical review and meta-analysis. Curr Pharm Des 2010; 16: 522–537.

    Article  CAS  PubMed  Google Scholar 

  25. Choi KH, Wykes T, Kurtz MM . Adjunctive pharmacotherapy for cognitive deficits in schizophrenia: meta-analytical investigation of efficacy. Br J Psychiatry 2013; 203: 172–178.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sanacora G, Zarate CA, Krystal JH, Manji HK . Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nat Rev Drug Discov 2008; 7: 426–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Imbesi M, Uz T, Manev R, Sharma RP, Manev H . Minocycline increases phosphorylation and membrane insertion of neuronal GluR1 receptors. Neurosci Lett 2008; 447: 134–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sassoe-Pognetto M, Cantino D, Panzanelli P, Verdun di Cantogno L, Giustetto M, Margolis FL et al. Presynaptic co-localization of carnosine and glutamate in olfactory neurones. Neuroreport 1993; 5: 7–10.

    Article  CAS  PubMed  Google Scholar 

  29. Panzanelli P, Cantino D, Sassoe-Pognetto M . Co-localization of carnosine and glutamate in photoreceptors and bipolar cells of the frog retina. Brain Res 1997; 758: 143–152.

    Article  CAS  PubMed  Google Scholar 

  30. Bakardjiev A . Carnosine and beta-alanine release is stimulated by glutamatergic receptors in cultured rat oligodendrocytes. Glia 1998; 24: 346–351.

    Article  CAS  PubMed  Google Scholar 

  31. Smythies J . Redox mechanisms at the glutamate synapse and their significance: a review. Eur J Pharmacol 1999; 370: 1–7.

    Article  CAS  PubMed  Google Scholar 

  32. Tamba M, Torreggiani A . Hydroxyl radical scavenging by carnosine and Cu(II)-carnosine complexes: a pulse-radiolysis and spectroscopic study. Int J Radiat Biol 1999; 75: 1177–1188.

    Article  CAS  PubMed  Google Scholar 

  33. Hashimoto K . Targeting of NMDA receptors in new treatments for schizophrenia. Expert Opin Ther Targets 2014; 18: 1049–1063.

    Article  CAS  PubMed  Google Scholar 

  34. Marx CE, Keefe RS, Buchanan RW, Hamer RM, Kilts JD, Bradford DW et al. Proof-of-concept trial with the neurosteroid pregnenolone targeting cognitive and negative symptoms in schizophrenia. Neuropsychopharmacology 2009; 34: 1885–1903.

    Article  CAS  PubMed  Google Scholar 

  35. Smith CC, Martin SC, Sugunan K, Russek SJ, Gibbs TT, Farb DH . A role for picomolar concentrations of pregnenolone sulfate in synaptic activity-dependent Ca2+ signaling and CREB activation. Mol Pharmacol 2014; 86: 390–398.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Moher D, Liberati A, Tetzlaff J, Altman DG . Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 2009; 62: 1006–1012.

    Article  PubMed  Google Scholar 

  37. Green MF, Nuechterlein KH, Gold JM, Barch DM, Cohen J, Essock S et al. Approaching a consensus cognitive battery for clinical trials in schizophrenia: the NIMH-MATRICS conference to select cognitive domains and test criteria. Biol Psychiatry 2004; 56: 301–307.

    Article  PubMed  Google Scholar 

  38. Guy W . ECDEU Assessment Manual for Psychopharmacology. NIMH Psychopharmacology Research Branch, Department of Health, Education and Welfare: Rockville, MD, 1976; 218–222.

    Google Scholar 

  39. Hirschberg R, Cohen AH, Kopple JD . Effects of keto acid supplements on renal function and histology in azotemic rats fed high-protein diets. Am J Nephrol 1988; 8: 50–56.

    Article  CAS  PubMed  Google Scholar 

  40. DerSimonian R, Laird N . Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177–188.

    Article  CAS  PubMed  Google Scholar 

  41. Egger M, Davey Smith G, Schneider M, Minder C . Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Duval S, Tweedie R . Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000; 56: 455–463.

    Article  CAS  PubMed  Google Scholar 

  43. Higgins BM, Cripps PJ, Baker M, Moore L, Penrose FE, McConnell JF . Effects of body position, imaging plane, and observer on computed tomographic measurements of the lumbosacral intervertebral foraminal area in dogs. Am J Vet Res 2011; 72: 905–917.

    Article  PubMed  Google Scholar 

  44. Cain CK, McCue M, Bello I, Creedon T, Tang DI, Laska E et al. d-Cycloserine augmentation of cognitive remediation in schizophrenia. Schizophr Res 2014; 153: 177–183.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu F, Guo X, Wu R, Ou J, Zheng Y, Zhang B et al. Minocycline supplementation for treatment of negative symptoms in early-phase schizophrenia: a double blind, randomized, controlled trial. Schizophr Res 2014; 153: 169–176.

    Article  PubMed  Google Scholar 

  46. Schoemaker JH, Jansen WT, Schipper J, Szegedi A . The selective glycine uptake inhibitor Org 25935 as an adjunctive treatment to atypical antipsychotics in predominant persistent negative symptoms of schizophrenia: results from the GIANT trial. Journal of Clinical Psychopharmacology 2014; 34: 190–198.

    Article  CAS  PubMed  Google Scholar 

  47. D'Souza DC, Radhakrishnan R, Perry E, Bhakta S, Singh NM, Yadav R et al. Feasibility, safety, and efficacy of the combination of D-serine and computerized cognitive retraining in schizophrenia: an international collaborative pilot study. Neuropsychopharmacology 2013; 38: 492–503.

    Article  CAS  PubMed  Google Scholar 

  48. Chengappa KN, Turkin SR, DeSanti S, Bowie CR, Brar JS, Schlicht PJ et al. A preliminary, randomized, double-blind, placebo-controlled trial of L-carnosine to improve cognition in schizophrenia. Schizophr Res 2012; 142: 145–152.

    Article  PubMed  Google Scholar 

  49. Weiser M, Heresco-Levy U, Davidson M, Javitt DC, Werbeloff N, Gershon AA et al. A multicenter, add-on randomized controlled trial of low-dose d-serine for negative and cognitive symptoms of schizophrenia. J Clin Psychiatry 2012; 73: e728–e734.

    Article  CAS  PubMed  Google Scholar 

  50. Levkovitz Y, Mendlovich S, Riwkes S, Braw Y, Levkovitch-Verbin H, Gal G et al. A double-blind, randomized study of minocycline for the treatment of negative and cognitive symptoms in early-phase schizophrenia. J Clin Psychiatry 2010; 71: 138–149.

    Article  CAS  PubMed  Google Scholar 

  51. Berk M, Copolov D, Dean O, Lu K, Jeavons S, Schapkaitz I et al. N-acetyl cysteine as a glutathione precursor for schizophrenia–a double-blind, randomized, placebo-controlled trial. Biol Psychiatry 2008; 64: 361–368.

    Article  CAS  PubMed  Google Scholar 

  52. Buchanan RW, Javitt DC, Marder SR, Schooler NR, Gold JM, McMahon RP et al. The Cognitive and Negative Symptoms in Schizophrenia Trial (CONSIST): the efficacy of glutamatergic agents for negative symptoms and cognitive impairments. Am J Psychiatry 2007; 164: 1593–1602.

    Article  PubMed  Google Scholar 

  53. Duncan EJ, Szilagyi S, Schwartz MP, Bugarski-Kirola D, Kunzova A, Negi S et al. Effects of D-cycloserine on negative symptoms in schizophrenia. Schizophr Res 2004; 71: 239–248.

    Article  PubMed  Google Scholar 

  54. Goff DC, Leahy L, Berman I, Posever T, Herz L, Leon AC et al. A placebo-controlled pilot study of the ampakine CX516 added to clozapine in schizophrenia. J Clin Psychopharmacol 2001; 21: 484–487.

    Article  CAS  PubMed  Google Scholar 

  55. Goff DC, Tsai G, Levitt J, Amico E, Manoach D, Schoenfeld DA et al. A placebo-controlled trial of D-cycloserine added to conventional neuroleptics in patients with schizophrenia. Arch Gen Psychiatry 1999; 56: 21–27.

    Article  CAS  PubMed  Google Scholar 

  56. Tsai GE, Yang P, Chung LC, Tsai IC, Tsai CW, Coyle JT . D-serine added to clozapine for the treatment of schizophrenia. Am J Psychiatry 1999; 156: 1822–1825.

    CAS  PubMed  Google Scholar 

  57. Tsai G, Yang P, Chung LC, Lange N, Coyle JT . D-serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 1998; 44: 1081–1089.

    Article  CAS  PubMed  Google Scholar 

  58. Gardner DM, Murphy AL, O'Donnell H, Centorrino F, Baldessarini RJ . International consensus study of antipsychotic dosing. Am J Psychiatry 2010; 167: 686–693.

    Article  PubMed  Google Scholar 

  59. Lindenmayer JP, Bernstein-Hyman R, Grochowski S . Five-factor model of schizophrenia. Initial validation. J Nerv Ment Dis 1994; 182: 631–638.

    Article  CAS  PubMed  Google Scholar 

  60. Ohnuma T, Sakai Y, Maeshima H, Higa M, Hanzawa R, Kitazawa M et al. No correlation between plasma NMDA-related glutamatergic amino acid levels and cognitive function in medicated patients with schizophrenia. Int J Psychiatry Med 2012; 44: 17–27.

    Article  PubMed  Google Scholar 

  61. Bustillo JR, Chen H, Gasparovic C, Mullins P, Caprihan A, Qualls C et al. Glutamate as a marker of cognitive function in schizophrenia: a proton spectroscopic imaging study at 4 Tesla. Biol Psychiatry 2011; 69: 19–27.

    Article  CAS  PubMed  Google Scholar 

  62. Kegeles LS, Mao X, Stanford AD, Girgis R, Ojeil N, Xu X et al. Elevated prefrontal cortex gamma-aminobutyric acid and glutamate-glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy. Arch Gen Psychiatry 2012; 69: 449–459.

    Article  CAS  PubMed  Google Scholar 

  63. Kraguljac NV, White DM, Reid MA, Lahti AC . Increased hippocampal glutamate and volumetric deficits in unmedicated patients with schizophrenia. JAMA Psychiatry 2013; 70: 1294–1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ohrmann P, Siegmund A, Suslow T, Pedersen A, Spitzberg K, Kersting A et al. Cognitive impairment and in vivo metabolites in first-episode neuroleptic-naive and chronic medicated schizophrenic patients: a proton magnetic resonance spectroscopy study. J Psychiatr Res 2007; 41: 625–634.

    Article  PubMed  Google Scholar 

  65. Reid MA, Kraguljac NV, Avsar KB, White DM, den Hollander JA, Lahti AC . Proton magnetic resonance spectroscopy of the + in schizophrenia. Schizophr Res 2013; 147: 348–354.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Rusch N, Tebartz van Elst L, Valerius G, Buchert M, Thiel T, Ebert D et al. Neurochemical and structural correlates of executive dysfunction in schizophrenia. Schizophr Res 2008; 99: 155–163.

    Article  PubMed  Google Scholar 

  67. Shirayama Y, Obata T, Matsuzawa D, Nonaka H, Kanazawa Y, Yoshitome E et al. Specific metabolites in the medial prefrontal cortex are associated with the neurocognitive deficits in schizophrenia: a preliminary study. Neuroimage 2010; 49: 2783–2790.

    Article  CAS  PubMed  Google Scholar 

  68. Poels EM, Kegeles LS, Kantrowitz JT, Javitt DC, Lieberman JA, Abi-Dargham A et al. Glutamatergic abnormalities in schizophrenia: a review of proton MRS findings. Schizophr Res 2014; 152: 325–332.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Milev P, Ho BC, Arndt S, Andreasen NC . Predictive values of neurocognition and negative symptoms on functional outcome in schizophrenia: a longitudinal first-episode study with 7-year follow-up. Am J Psychiatry 2005; 162: 495–506.

    Article  PubMed  Google Scholar 

  70. Torgalsboen AK, Mohn C, Rishovd Rund B . Neurocognitive predictors of remission of symptoms and social and role functioning in the early course of first-episode schizophrenia. Psychiatry Res 2014; 216: 1–5.

    Article  PubMed  Google Scholar 

  71. Huganir RL, Nicoll RA . AMPARs and synaptic plasticity: the last 25 years. Neuron 2013; 80: 704–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. MacDonald ML, Ding Y, Newman J, Hemby S, Penzes P, Lewis DA et al. Altered glutamate protein co-expression network topology linked to spine loss in the auditory cortex of schizophrenia. Biol Psychiatry 2015; 77: 959–968.

    Article  CAS  PubMed  Google Scholar 

  73. Wu Y, Arai AC, Rumbaugh G, Srivastava AK, Turner G, Hayashi T et al. Mutations in ionotropic AMPA receptor 3 alter channel properties and are associated with moderate cognitive impairment in humans. Proc Natl Acad Sci USA 2007; 104: 18163–18168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Olney JW, Farber NB . NMDA antagonists as neurotherapeutic drugs, psychotogens, neurotoxins, and research tools for studying schizophrenia. Neuropsychopharmacology 1995; 13: 335–345.

    Article  CAS  PubMed  Google Scholar 

  75. Takahata R, Moghaddam B . Activation of glutamate neurotransmission in the prefrontal cortex sustains the motoric and dopaminergic effects of phencyclidine. Neuropsychopharmacology 2003; 28: 1117–1124.

    Article  CAS  PubMed  Google Scholar 

  76. Moghaddam B, Adams B, Verma A, Daly D . Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 1997; 17: 2921–2927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jackson ME, Homayoun H, Moghaddam B . NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex. Proc Natl Acad Sci USA 2004; 101: 8467–8472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hashimoto K, Malchow B, Falkai P, Schmitt A . Glutamate modulators as potential therapeutic drugs in schizophrenia and affective disorders. Eur Arch Psychiatry Clin Neurosci 2013; 263: 367–377.

    Article  PubMed  Google Scholar 

  79. Carone FA, Ganote CE . D-serine nephrotoxicity. The nature of proteinuria, glucosuria, and aminoaciduria in acute tubular necrosis. Arch Pathol 1975; 99: 658–662.

    CAS  PubMed  Google Scholar 

  80. Krysta K, Murawiec S, Klasik A, Wiglusz MS, Krupka-Matuszczyk I . Sex-specific differences in cognitive functioning among schizophrenic patients. Psychiatr Danub 2013; 25: S244–S246.

    PubMed  Google Scholar 

  81. Hafner H, Maurer K, Loffler W, an der Heiden W, Hambrecht M, Schultze-Lutter F . Modeling the early course of schizophrenia. Schizophr Bull 2003; 29: 325–340.

    Article  PubMed  Google Scholar 

  82. Tanahashi S, Yamamura S, Nakagawa M, Motomura E, Okada M . Clozapine, but not haloperidol, enhances glial D-serine and L-glutamate release in rat frontal cortex and primary cultured astrocytes. Br J Pharmacol 2012; 165: 1543–1555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Javitt DC . Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry 2004; 9: 979.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Drs Michael Berk, Robert W Buchanan, Christopher Cain, Roy Chengappa, Deepak Cyril D’Souza, Erica Duncan and Fang Liu for kindly providing additional data. No funding support was obtained for this report.

Author Contributions

YI, HU, TS, RSEK, EP and SN led study design, literature review and interpretation and manuscript preparation. All authors have contributed to and approved the current version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Nakajima.

Ethics declarations

Competing interests

YI has received manuscript fees from Wiley Japan within the past 3 years. SN has received fellowship grants from the CIHR and Japan Society for the Promotion of Science, and manuscript fees from Dainippon Sumitomo Pharma and Kyowa Hakko Kirin. TS has received manuscript or speaker’s fees from Astellas, Dainippon Sumitomo, Eli Lilly, Elsevier Japan, Janssen, Meiji Seika, Novartis, Otsuka and Wiley Japan within the past 3 years. RSEK currently or in the past 3 years has received investigator-initiated research funding support from the Department of Veteran’s Affair, Feinstein Institute for Medical Research, GlaxoSmithKline, National Institute of Mental Health, Novartis, Psychogenics, Research Foundation for Mental Hygiene and the Singapore National Medical Research Council. He currently or in the past 3 years has received honoraria, served as a consultant, or advisory board member for Abbvie, Akebia, Amgen, Astellas, Asubio, AviNeuro/ChemRar, BiolineRx, Biogen Idec, Biomarin, Boehringer-Ingelheim, Eli Lilly, FORUM, GW Pharmaceuticals, Helicon, Lundbeck, Merck, Minerva Neurosciences, Mitsubishi, Novartis, Otsuka, Pfizer, Roche, Shire, Sunovion, Takeda, Targacept and WWCT. RSEK receives royalties from the BACS testing battery, the MATRICS Battery (BACS Symbol Coding) and the Virtual Reality Functional Capacity Assessment Tool (VRFCAT). He is also a shareholder in NeuroCog Trials and Sengenix. EP has received the Ontario Graduate Scholarship and the Canada Graduate Scholarship. FC has received the Ontario Graduate Scholarship and the Canada Graduate Scholarship. MM has received grants and/or speaker’s honoraria from Asahi Kasei Pharma, Astellas Pharmaceutical, Daiichi Sankyo, Dainippon-Sumitomo Pharma, Eisai, Eli Lilly, GlaxoSmithKline, Janssen Pharmaceutical, Meiji-Seika Pharma, Mochida Pharmaceutical, MSD, Novartis Pharma, Otsuka Pharmaceutical, Pfizer, Shionogi, Takeda, Tanabe Mitsubishi Pharma and Yoshitomi Yakuhin within the past 3 years. AG has received research support from the following external funding agencies: the Canadian Institutes of Health Research (CIHR), US National Institute of Health, Ontario Mental Health Foundation, Brain and Behavior Research Foundation, Mexico ICyTDF, CONACyT, Ministry of Economic Development and Innovation of Ontario, Ontario AHSC AFP Innovation Fund and W Garfield Weston Foundation. HU has received grants from Astellas Pharmaceutical, Eisai, Otsuka Pharmaceutical, GlaxoSmithKline, Shionogi, Dainippon-Sumitomo Pharma, Eli Lilly, Mochida Pharmaceutical, Meiji-Seika Pharma and Yoshitomi Yakuhin and speaker’s honoraria from Otsuka Pharmaceutical, Eli Lilly, Shionogi, GlaxoSmithKline, Yoshitomi Yakuhin, Dainippon-Sumitomo Pharma, Meiji-Seika Pharma, Abbvie, MSD and Janssen Pharmaceutical within the past 2 years. Other authors have no financial or other relationship relevant to the subject of this manuscript.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwata, Y., Nakajima, S., Suzuki, T. et al. Effects of glutamate positive modulators on cognitive deficits in schizophrenia: a systematic review and meta-analysis of double-blind randomized controlled trials. Mol Psychiatry 20, 1151–1160 (2015). https://doi.org/10.1038/mp.2015.68

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.68

This article is cited by

Search

Quick links