Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dietary glycemic index modulates the behavioral and biochemical abnormalities associated with autism spectrum disorder

Abstract

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder of unknown etiology, but very likely resulting from both genetic and environmental factors. There is good evidence for immune system dysregulation in individuals with ASD. However, the contribution of insults such as dietary factors that can also activate the immune system have not been explored in the context of ASD. In this paper, we show that the dietary glycemic index has a significant impact on the ASD phenotype. By using BTBR mice, an inbred strain that displays behavioral traits that reflect the diagnostic symptoms of human ASD, we found that the diet modulates plasma metabolites, neuroinflammation and brain markers of neurogenesis in a manner that is highly reflective of ASD in humans. Overall, the manuscript supports the idea that ASD results from gene–environment interactions and that in the presence of a genetic predisposition to ASD, diet can make a large difference in the expression of the condition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Herbert MR . Contributions of the environment and environmentally vulnerable physiology to autism spectrum disorders. Curr Opin Neurol 2010; 23: 103–110.

    Article  Google Scholar 

  2. Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T et al. Genetic heritability and shared environmental factors among twin pairs with autim. Arch Gen Psychiatry 2011; 68: 1095–1102.

    Article  Google Scholar 

  3. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA . Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 2005; 57: 67–81.

    Article  CAS  Google Scholar 

  4. Patterson PH . Immune involvement in schizophrenia and autism: etiology, pathology and animal models. Behav Brain Res 2009; 204: 313–321.

    Article  CAS  Google Scholar 

  5. Michel M, Schmidt MJ, Mirnics K . Immune system gene dysregulation in autism and schizophrenia. Dev Neurobiol 2012; 72: 1277–1287.

    Article  CAS  Google Scholar 

  6. Meyer U, Feldon J, Dammann O . Schizophrenia and autism: both shared and disorder-specific pathogenesis via perinatal inflammation. Pediatr Res 2011; 69: 26R–33R.

    Article  Google Scholar 

  7. Donath MY, Shoelson SE . Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 2011; 11: 98–107.

    Article  CAS  Google Scholar 

  8. Lumeng CN, Saltiel AR . Inflammatory links between obesity and metabolic disease. J Clin Invest 2011; 121: 2111–2117.

    Article  CAS  Google Scholar 

  9. Lyall K, Pauls DL, Santangelo S, Spiegelman D, Ascherio A . Maternal early life factors associated with hormone levels and the risk of having a child with an autism spectrum disorder in the Nurses Health Study II. J Autism Dev Disord 2011; 41: 618–627.

    Article  Google Scholar 

  10. Krakowiak P, Walker CK, Bremer AA, Baker AS, Ozonoff S, Hansen RL et al. Maternal metabolic conditions and risk for autism and other neurodevelopmental disorders. Pediatrics 2012; 129: e1121.

    Article  Google Scholar 

  11. Pepys MB, Hirschfield GM . C-reactive protein: a critical update. J Clin Invest 2003; 111: 1805–1812.

    Article  CAS  Google Scholar 

  12. Lin J, Zhang M, Song F, Qin J, Wang R, Yao P et al. Association between C-reactive protein and pre-diabetic status in a Chinese Han clinical population. Diabetes Metab Res Rev 2009; 25: 219–223.

    Article  CAS  Google Scholar 

  13. Wang X, Bao W, Liu J, Ouyang YY, Wang D, Rong S et al. Inflammatory markers and risk of type 2 diabetes. Diabetes Care 2013; 36: 1166–1175.

    Article  Google Scholar 

  14. Choi J, Joseph L, Pilote L . Obesity and C-reactive protein in various populations: a systematic review and meta-analysis. Obes Rev 2013; 14: 232–244.

    Article  CAS  Google Scholar 

  15. Brown AS, Sourander A, Hinkka-Yli-Salomaki S, McKeague IW, Sundvall J, Surcel H-M . Elevated maternal C-reactive protein and autism in a national birth cohort. Mol Psychiatry 2013; 19: 259–264.

    Article  Google Scholar 

  16. Galland L . Diet and inflammation. Nutr Clin Pract 2010; 25: 634–640.

    Article  Google Scholar 

  17. Neuhouser ML, Schwarz Y, Wang CX, Breymeyer K, Coronado G, Wang C-Y et al. A low glycemic load diet reduces serum C-reactive protein and modestly increases adiponectin in overweight and obese adults. J Nutr 2012; 142: 369–374.

    Article  CAS  Google Scholar 

  18. Livesey G, Taylor R, Hulshof T, Howlett J . Glycemic response and health—a systematic review and meta-analysis: relations between dietary glycemic properties and health outcomes. Am J Clin Nutr 2008; 87: 258S–268S.

    Article  CAS  Google Scholar 

  19. de Carvalho Vidigal F, Guedes Cocate P, Goncalves Periera L, de Cassia Goncalves Alfenas R . The role of hyperglycemia in the induction of oxidative stress and inflammatory process. Nutr Hosp 2012; 27: 1391–1398.

    CAS  PubMed  Google Scholar 

  20. Uchiki T, Weikel KA, Jiao W, Shang F, Caceres A, Pawlak D et al. Glycation-altered proteolysis as a pathobiologic mechanism that links dietary glycemic index, aging, and age-related disease (in non-diabetics). Aging Cell 2012; 11: 1–13.

    Article  CAS  Google Scholar 

  21. Livadas S, Dastamani A, Dikaiakos A, Mantzou A, Chrousos GP . Diet with low glycemic index, low glycemic load dessert consumption decreases serum advanced glycation end products concentrations in both overweight/obese children and adults undergoing nutritional intervention. Endocr Rev 2013; 34: MON-349.

    Google Scholar 

  22. Vlassara H, Striker GE . AGE restriction in diabetes mellitus: a paradigm shift. Nat Rev Endocrinol 2011; 7: 526–539.

    Article  CAS  Google Scholar 

  23. Fleming TH, Humpert PM, Nawroth PP, Bierhaus A . Reactive metabolites and AGE/RAGE-mediated cellular dysfunction affect the aging process-a mini-review. Gerontol 2011; 57: 435–443.

    CAS  Google Scholar 

  24. Desai KM, Chang T, Wang H, Banigesh A, Dhar A, Liu J et al. Oxidative stress and aging: is methylglyoxal the hidden enemy? Can J Physiol Pharmacol 2010; 88: 273–284.

    Article  CAS  Google Scholar 

  25. Maher P . Methylglyoxal, advanced glycation end products and autism: is there a connection? Med Hypotheses 2012; 78: 548–552.

    Article  CAS  Google Scholar 

  26. Silverman JL, Yang MH, Lord C, Crawley JN . Behavioral phenotyping assays for mouse models of autism. Nat Rev Neurosci 2010; 11: 490–502.

    Article  CAS  Google Scholar 

  27. Meyza KZ, Defensor EB, Jensen AL, Corley MJ, Pearson BL, Pobbe RLH et al. The BTBR T+tf/J mouse model for autism spectrum disorders-in search of biomarkers. Behav Brain Res 2013; 251: 25–34.

    Article  CAS  Google Scholar 

  28. Weikel KA, FitzGerald P, Shang F, Caceres MA, Bian Q, Hanada JT et al. Natural history of age-related retinal lesions that precede AMD in mice fed high or low glycemic index diets. Invest Ophthalmol Vis Sci 2012; 53: 622–632.

    Article  CAS  Google Scholar 

  29. Crawley JN . Translational animal models of autism and neurodevelopmental disorders. Dialogues Clin Neurosci 2012; 14: 293–305.

    PubMed  PubMed Central  Google Scholar 

  30. Sanderson DJ, Good MA, Skelton K, Sprengel R, Seeburg PH, Rawlins JN et al. Enhanced long-term and impaired short-term spatial memory in GluA1 AMPA receptor subunit knockout mice: evidence for dual-process memory model. Learn Mem 2009; 16: 379–386.

    Article  CAS  Google Scholar 

  31. McCullagh EA, Featherstone DE . Behavioral characterization of system xc- mutant mice. Behav Brain Res 2014; 265: 1–11.

    Article  CAS  Google Scholar 

  32. Malkova NV, Yu CZ, Hsiao EY, Moore MJ, Patterson PH . Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain Behav Immun 2012; 26: 607–616.

    Article  CAS  Google Scholar 

  33. Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS . MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Res 2012; 40: W127–W133.

    Article  CAS  Google Scholar 

  34. Garay PA, Hsiao EY, Patterson PH, McAllister AK . Maternal immune activation causes age- and region-specific changes in brain cytokines in offspring throughout development. Brain Behav Immun 2013; 31: 54–68.

    Article  CAS  Google Scholar 

  35. Stephenson DT, O'Neil SM, Narayan S, Tiwari A, Arnold E, Samaroo HD et al. Histopathologic characterization of the BTBR mouse model of autistic-like behavior reveals selective changes in neurodevelopmental proteins and adult hippocampal neurogenesis. Mol Autism 2011; 2: 7.

    Article  CAS  Google Scholar 

  36. Huguet G, Ey E, Bourgeron T . The genetic landscape of autism spectrum disorders. Annu Rev Genomics Hum Genet 2013; 14: 191–213.

    Article  CAS  Google Scholar 

  37. Harry GJ . Microglia during development and aging. Pharmacol Ther 2013; 139: 313–326.

    Article  CAS  Google Scholar 

  38. Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci 2014; 17: 400–406.

    Article  CAS  Google Scholar 

  39. Kaminska B, Gozdz A, Zawadzka M, Ellert-Miklaszewska A, Lipko M . MAPK signal transduction underlying brain inflammation and gliosis as therapeutic target. Anat Rec 2009; 292: 1902–1913.

    Article  CAS  Google Scholar 

  40. Edmonson C, Ziats MN, Rennert OM . Altered glial marker expression in autistic post-mortem prefrontal cortex and cerebellum. Mol Autism 2014; 5: 3.

    Article  Google Scholar 

  41. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA 2009; 106: 3698–3703.

    Article  CAS  Google Scholar 

  42. Pardo CA, Eberhart CG . The neurobiology of autism. Brain Pathol 2007; 17: 434–447.

    Article  CAS  Google Scholar 

  43. Wegiel J, Kuchna I, Nowicki K, Imaki H, Wegiel J, Marchi E et al. The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol 2010; 119: 755–770.

    Article  Google Scholar 

  44. Stoner R, Chow ML, Boyle MP, Sunkin SM, Mouton PR, Roy S et al. Patches of disorganization in the neocortex of children with autism. N Engl J Med 2014; 370: 1209–1219.

    Article  CAS  Google Scholar 

  45. Groen WB, Buitelaar JK, van der Gaag RJ, Zwiers MP . Pervasive microstructural abnormalities in autism: a DTI study. J Psychiatry Neurosci 2011; 36: 32–40.

    Article  Google Scholar 

  46. Vlassara H, Cai W, Crandall J, Goldberg T, Oberstein R, Dardaine V et al. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc Natl Acad Sci USA 2002; 99: 15596–15601.

    Article  CAS  Google Scholar 

  47. Stirban A, Negrean M, Gotting C, Uribarri J, Gawlowski T, Stratmann B et al. Dietary advance glycation endproducts and oxidative stress. Ann NY Acad Sci 2008; 1126: 276–279.

    Article  CAS  Google Scholar 

  48. Rutkowsky JM, Knotts TA, Ono-Moore KD, McCoin CS, Huang S, Schneider D et al. Acylcarnitines activate proinflammatory signaling pathways. Am J Physiol Endocrinol Metab 2014; 306: E1378–E1387.

    Article  CAS  Google Scholar 

  49. Bakala H, Ladouce R, Baraibar MA, Friguet B . Differential expression and glycative damage affect specific mitochondrial proteins with aging in rat liver. Biochim Biophys Acta 2013; 1832: 2057–2067.

    Article  CAS  Google Scholar 

  50. Kohman RA, Rhodes JS . Neurogenesis, inflammation and behavior. Brain Behav Immun 2013; 27: 22–32.

    Article  CAS  Google Scholar 

  51. Liu Y-H, Lai W-S, Tsay H-J, Wang T-W, Yu J-Y . Effects of maternal immune activation on adult neurogenesis in the subventricular zone-olfactory bulb pathway and olfactory discrimination. Schizophr Res 2013; 151: 1–11.

    Article  Google Scholar 

  52. Gleeson JG, Lin PT, Flanagan LA, Walsh CA . Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 1999; 23: 257–271.

    Article  CAS  Google Scholar 

  53. Dinarello CA, Novick D, Kim S, Kaplanski G . Interleukin-18 and IL-18 binding protein. Front Immunol 2013; 4: 289.

    PubMed  PubMed Central  Google Scholar 

  54. Krumbholz M, Theil D, Steinmeyer F, Cepok S, Hemmer B, Hofbauer M et al. Ccl19 is constitutively expressed in the CNS, up-regulated in neuroinflammation, active and also inactive multiple sclerosis lesions. J Neuroimmunol 2007; 190: 72–79.

    Article  CAS  Google Scholar 

  55. Kaul D, Habbel P, Derkow K, Kruger C, Franzoni E, Wulczyn FG et al. Expression of Toll-like receptors in the developing brain. PLoS One 2012; 7: e37767.

    Article  CAS  Google Scholar 

  56. Mocco J, Mack WJ, Ducruet AF, Sosunov SA, Sughrue ME, Hassid BG et al. Complement component C3 mediates inflammatory injury following focal cerebral ischemia. Circ Res 2006; 99: 209–271.

    Article  CAS  Google Scholar 

  57. Tremblay M-E, Stevens BR, Sierra A, Wake H, Bessis A, Nimmerjahn A . The role of microglia in the healthy brain. J Neurosci 2011; 31: 16064–16069.

    Article  CAS  Google Scholar 

  58. Momeni N, Bergquist J, Brudin L, Behnia F, Sivberg B, Joghataei MT et al. A novel blood-based biomarker for detection of autism spectrum disorders. Transl Psychiatry 2012; 2: e91.

    Article  CAS  Google Scholar 

  59. Chen Y, Guillemin GJ . Kynurenine pathway metabolites in humans: disease and healthy states. Int J Tryptophan Res 2009; 2: 1–19.

    Article  Google Scholar 

  60. Frye RE, Melnyk S, MacFabe DF . Unique acyl-carnitine profiles are potential biomarkers for acquired mitochondrial disease in autism spectrum disorder. Transl Psychiatry 2013; 3: e220.

    Article  CAS  Google Scholar 

  61. Joels M, Sarabdjitsingh A, Karst H . Unraveling the time domains of corticosteroid influences on brain activity: rapid, slow and chronic modes. Pharmacol Rev 2012; 64: 901–938.

    Article  CAS  Google Scholar 

  62. Naviaux JC, Schuchbauer MA, Li K, Wang L, Risbrough VB, Powell SB et al. Reversal of autism-like behaviors and metabolism in adult mice with single-dose antipurinergic therapy. Transl Psychiatry 2014; 4: e400.

    Article  CAS  Google Scholar 

  63. Kuo S-M . The interplay between fiber and the intestinal microbiome in the inflammatory response. Adv Nutr 2013; 4: 16–28.

    Article  CAS  Google Scholar 

  64. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 2013; 155: 1451–1463.

    Article  CAS  Google Scholar 

  65. Geier DA, Kern JK, Garver CR, Adams JB, Audhya T, Geier MR . A prospective study of transsulfuration biomarkers in autistic disorders. Neurochem Res 2009; 34: 386–393.

    Article  CAS  Google Scholar 

  66. Frustaci A, Neri M, Cesario A, Adams JB, Domenici E, Dalla Bernardina B et al. Oxidative stress-related biomarkers in autism: systematic review and meta-analyses. Free Radic Biol Med 2012; 52: 2128–2141.

    Article  CAS  Google Scholar 

  67. Naushad SM, Jain JM, Prasad CK, Naik U, Akella RR . Autistic children exhibit distinct plasma amino acid profile. Indian J Biochem Biophys 2013; 50: 474–478.

    CAS  PubMed  Google Scholar 

  68. Ming X, Stein TP, Barnes V, Rhodes N, Guo L . Metabolic perturbance in autism spectrum disorders: a metabolomics study. J Proteome Res 2012; 11: 5856–5862.

    Article  CAS  Google Scholar 

  69. James SJ . Autism and folate-dependent one-carbon metabolism: serendipity and critical branch-point decisions in science. Glob Adv Health Med 2013; 2: 48–51.

    Article  Google Scholar 

  70. Mbadiwe T, Millis RM . Epigenetics and autism. Autism Res Treat 2013; 2013: 826156.

    PubMed  PubMed Central  Google Scholar 

  71. Srinivasan P . A review of dietary interventions in autism. Ann Clin Psychiatry 2009; 21: 237–247.

    PubMed  Google Scholar 

  72. Marti LF . Effectiveness of nutritional interventions on the functioning of children with ADHD and/or ASD. Bol Asoc Med PR 2010; 102: 31–42.

    Google Scholar 

  73. Ruskin DN, Svedova J, Cote JL, Sandau U, Rho JM, Kawamura M et al. Ketogenic diet improves core symptoms of autism in BTBR mice. PLoS One 2013; 8: e65021.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fritz B. Burns Foundation. We thank Dr Christine Pelkman from Ingredion for supplying the starches for the diets.

Author Contributions

PM designed the study. AC, CF, RD, MG-S and PM performed the experiments and analyzed the data. AC, CF and PM wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Maher.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Currais, A., Farrokhi, C., Dargusch, R. et al. Dietary glycemic index modulates the behavioral and biochemical abnormalities associated with autism spectrum disorder. Mol Psychiatry 21, 426–436 (2016). https://doi.org/10.1038/mp.2015.64

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.64

This article is cited by

Search

Quick links