Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Calcyon stimulates neuregulin 1 maturation and signaling

Subjects

Abstract

Neuregulin1 (NRG1) is a single transmembrane protein that plays a critical role in neural development and synaptic plasticity. Both NRG1 and its receptor, ErbB4, are well-established risk genes of schizophrenia. The NRG1 ecto-domain (ED) binds and activates ErbB4 following proteolytic cleavage of pro-NRG1 precursor protein. Although several studies have addressed the function of NRG1 in brain, very little is known about the cleavage and shedding mechanism. Here we show that the neuronal vesicular protein calcyon is a potent activator and key determinant of NRG1 ED cleavage and shedding. Calcyon stimulates clathrin-mediated endocytosis and endosomal targeting; and its levels are elevated in postmortem brains of schizophrenics. Overexpression of calcyon stimulates NRG1 cleavage and signaling in vivo, and as a result, GABA transmission is enhanced in calcyon overexpressing mice. Conversely, NRG1 cleavage, ErbB4 activity and GABA transmission are decreased in calcyon null mice. Moreover, stimulation of NRG1 cleavage by calcyon was recapitulated in HEK 293 cells suggesting the mechanism involved is cell-autonomous. Finally, studies with site-specific mutants in calcyon and inhibitors for the major sheddases indicate that the stimulatory effects of calcyon on NRG1 cleavage and shedding depend on clathrin-mediated endocytosis, β-secretase 1, and interaction with clathrin adaptor proteins. Together these results identify a novel mechanism for NRG1 cleavage and shedding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Mei L, Xiong WC . Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci 2008; 9: 437–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Norton N, Moskvina V, Morris DW, Bray NJ, Zammit S, Williams NM et al. Evidence that interaction between neuregulin 1 and its receptor erbB4 increases susceptibility to schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2006; 141B: 96–101.

    Article  CAS  PubMed  Google Scholar 

  3. Silberberg G, Darvasi A, Pinkas-Kramarski R, Navon R . The involvement of ErbB4 with schizophrenia: association and expression studies 2. Am J Med Genet B Neuropsychiatr Genet 2006; 141: 142–148.

    Article  Google Scholar 

  4. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002; 71: 877–892.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Stefansson H, Steinthorsdottir V, Thorgeirsson TE, Gulcher JR, Stefansson K . Neuregulin 1 and schizophrenia. Ann Med 2004; 36: 62–71.

    Article  CAS  PubMed  Google Scholar 

  6. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008; 320: 539–543.

    Article  CAS  PubMed  Google Scholar 

  7. Yang JZ, Si TM, Ruan Y, Ling YS, Han YH, Wang XL et al. Association study of neuregulin 1 gene with schizophrenia. Mol Psychiatry. 2003; 8: 706–709.

    Article  CAS  PubMed  Google Scholar 

  8. Barros CS, Calabrese B, Chamero P, Roberts AJ, Korzus E, Lloyd K et al. Impaired maturation of dendritic spines without disorganization of cortical cell layers in mice lacking NRG1/ErbB signaling in the central nervous system. Proc Natl Acad Sci USA 2009; 106: 4507–4512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen Y-J, Zhang M, Yin D-M, Wen L, Ting A, Wang P et al. ErbB4 in parvalbumin‐ positive interneurons is critical for neuregulin 1 regulation of long‐term potentiation. Proc Natl Acad Sci USA 2010; 107: 21818–21823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fazzari P, Paternain AV, Valiente M, Pla R, Luján R, Lloyd K et al. Control of cortical GABA circuitry development by Nrg1 and ErbB4 signalling. Nature 2010; 464: 1376–1380.

    Article  CAS  PubMed  Google Scholar 

  11. Krivosheya D, Tapia L, Levinson JN, Huang K, Kang Y, Hines R et al. ErbB4‐neuregulin signaling modulates synapse development and dendritic arborization through distinct mechanisms. J Biol Chem. 2008; 283: 32944–32956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Del Pino I, García‐Frigola C, Dehorter N, Brotons‐Mas JR, Alvarez‐Salvado E, Martínez de Lagrán M et al. Erbb4 deletion from fast‐spiking interneurons causes schizophrenia‐like phenotypes. Neuron 2013; 79: 1152–1168.

    Article  CAS  PubMed  Google Scholar 

  13. Ting AK, Chen Y, Wen L, Yin D-M, Shen C, Tao Y et al. Neuregulin 1 promotes excitatory synapse development and function in GABAergic interneurons. J Neurosci 2011; 31: 15–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wen L, Lu Y-S, Zhu X‐H, Li X‐M, Woo R‐S, Chen Y‐J et al. Neuregulin 1 regulates pyramidal neuron activity via ErbB4 in parvalbumin‐positive interneurons. Proc Natl Acad Sci U S A. 2010; 107: 1211–1216.

    Article  CAS  PubMed  Google Scholar 

  15. Woo R-S, Li X‐M, Tao Y, Carpenter‐Hyland E, Huang YZ, Weber J et al. Neuregulin‐1 enhances depolarization‐induced GABA release. Neuron 2007; 54: 599–610.

    Article  CAS  PubMed  Google Scholar 

  16. Yin D-M, Sun X‐D, Bean JC, Lin TW, Sathyamurthy A, Xiong W‐C et al. Regulation of spine formation by ErbB4 in PV‐positive interneurons. J Neurosci 2013a; 33: 19295–19303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yurek DM, Zhang L, Fletcher‐Turner A, Seroogy KB . Supranigral injection of neuregulin1‐beta induces striatal dopamine overflow. Brain Res 2004; 1028: 116–119.

    Article  CAS  PubMed  Google Scholar 

  18. Muthusamy N, Faundez V, Bergson C . Calcyon, a mammalian specific NEEP21 family member, interacts with adaptor protein complex 3 (AP—3) and regulates targeting of AP-3 cargoes. J Neurochem 2012; 123: 60–72.

    Article  CAS  PubMed  Google Scholar 

  19. Alberi S, Boda B, Steiner P, Nikonenko I, Hirling H, Muller D . The endosomal protein NEEP21 regulates AMPA receptor‐mediated synaptic transmission and plasticity in the hippocampus. Mol Cell Neurosci 2005; 29: 313–319.

    Article  CAS  PubMed  Google Scholar 

  20. Davidson HT, Xiao J, Dai R, Bergson C . Calcyon is necessary for activity—dependent AMPA receptor internalization and LTD in CA1 neurons of hippocampus. Eur J Neurosci 2009; 29: 42–54.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Norstrom EM, Zhang C, Tanzi R, Sisodia SS . Identification of NEEP21 as a ß-amyloid precursor protein-interacting protein in vivo that modulates amyloidogenic processing in vitro. J Neurosci 2010; 30: 15677–15685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yap CC, Wisco D, Kujala P, Lasiecka ZM, Cannon JT, Chang MC et al. The somatodendritic endosomal regulator NEEP21 facilitates axonal targeting of L1/NgCAM. J Cell Biol 2008; 180: 827–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xiao J, Dai R, Negyessy L, Bergson C . Calcyon, a novel partner of clathrin light chain, stimulates clathrin-mediated endocytosis. J Biol Chem 2006; 281: 15182–15193.

    Article  CAS  PubMed  Google Scholar 

  24. Bai J, He F, Novikova SI, Undie AS, Dracheva S, Haroutunian V et al. Abnormalities in the dopamine system in schizophrenia may lie in altered levels of dopamine receptor- interacting proteins. Biol Psychiatry 2004; 56: 427–440.

    Article  CAS  PubMed  Google Scholar 

  25. Baracskay KL, Haroutunian V, Meador-Woodruff JH . Dopamine receptor signaling molecules are altered in elderly schizophrenic cortex. Synapse 2006; 60: 271–279.

    CAS  PubMed  Google Scholar 

  26. Chong VZ, Thompson M, Beltaifa S, Webster MJ, Law AJ, Weickert CS . Elevated neuregulin-1 and ErbB4 protein in the prefrontal cortex of schizophrenic patients. Schizophr Res 2008; 100: 270–280.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Clinton SM, Ibrahim HM, Frey KA, Davis KL, Haroutunian V, Meador-Woodruff JH . Dopaminergic abnormalities in select thalamic nuclei in schizophrenia: involvement of the intracellular signal integrating proteins calcyon and spinophilin. Am J Psychiatry 2005; 162: 1859–1871.

    Article  PubMed  Google Scholar 

  28. Hashimoto R, Straub RE, Weickert CS, Hyde TM, Kleinman JE, Weinberger DR . Expression analysis of neuregulin-1 in the dorsolateral prefrontal cortex in schizophrenia. Mol Psychiatry 2003; 9: 299–307.

    Article  Google Scholar 

  29. Koh PO, Bergson C, Undie AS, Goldman-Rakic PS, Lidow MS . Up-regulation of the D1 dopamine receptor-interacting protein, calcyon, in patients with schizophrenia. Arch Gen Psychiatry 2003; 60: 311–319.

    Article  CAS  PubMed  Google Scholar 

  30. Law AJ, Lipska BK, Weickert CS, Hyde TM, Straub RE, Hashimoto R et al. Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5’ SNPs associated with the disease. Proc Natl Acad Sci U S A 2006; 103: 6747–6752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Deakin IH, Nissen W, Law AJ, Lane T, Kanso R, Schwab MH et al. Transgenic Overexpression of the Type I Isoform of Neuregulin 1 Affects Working Memory and Hippocampal Oscillations but not Long-term Potentiation. Cereb Cortex 2012; 22: 1520–1529.

    Article  PubMed  Google Scholar 

  32. Kato T, Kasai A, Mizuno M, Fengyi L, Shintani N, Maeda S et al. Phenotypic characterization of transgenic mice overexpressing neuregulin-1. PloS One 2010; 5: e14185.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Luo X, He W, Hu X, Yan R . Reversible Overexpression of Bace1-Cleaved Neuregulin-1 N-Terminal Fragment Induces Schizophrenia-Like Phenotypes in Mice. Biol Psychiatry 2013; 76: 120–127.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Trantham-Davidson H, Vazdarjanova A, Dai R, Terry A, Bergson C . Upregulation of Calcyon Results in Locomotor Hyperactivity and Reduced Anxiety in Mice. Behav Brain Res 2008; 189: 244–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vazdarjanova A, Bunting K, Muthusamy N, Bergson C . Calcyon upregulation in adolescence impairs response inhibition and working memory in adulthood. Mol Psychiatry. 2011; 16: 672–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yin D-M, Chen Y-J, Lu Y-S, Bean JC, Sathyamurthy A, Shen C et al. Reversal of behavioral deficits and synaptic dysfunction in mice overexpressing neuregulin 1. Neuron 2013b; 78: 644–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Luo X, Prior M, He W, Hu X, Tang X, Shen W et al. Cleavage of neuregulin-1 by BACE1 or ADAM10 protein produces differential effects on myelination. J Biol Chem 2011; 286: 23967–23974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shirakabe K, Wakatsuki S, Kurisaki T, Fujisawa-Sehara A . Roles of Meltrin beta/ADAM19 in the processing of neuregulin. J Biol Chem. 2001; 276: 9352–9358.

    Article  CAS  PubMed  Google Scholar 

  39. Yokozeki T, Wakatsuki S, Hatsuzawa K, Black RA, Wada I, Sehara-Fujisawa A . Meltrin beta (ADAM19) mediates ectodomain shedding of Neuregulin beta1 in the Golgi apparatus: fluorescence correlation spectroscopic observation of the dynamics of ectodomain shedding in living cells. Genes Cells Devoted Mol Cell Mech 2007; 12: 329–343.

    Article  CAS  Google Scholar 

  40. Zhang Z, Prentiss L, Heitzman D, Stahl RC, DiPino F, Carey DJ . Neuregulin isoforms in dorsal root ganglion neurons: Effects of the cytoplasmic domain on localization and membrane shedding of Nrg-1 type I. J Neurosci Res 2006; 84: 1–12.

    Article  CAS  PubMed  Google Scholar 

  41. Chia PZC, Toh WH, Sharples R, Gasnereau I, Hill AF, Gleeson PA . Intracellular itinerary of internalised β-secretase, BACE1, and its potential impact on β-amyloid peptide biogenesis. Traffic Cph Den 2013; 14: 997–1013.

    Article  CAS  Google Scholar 

  42. Das U, Scott DA, Ganguly A, Koo EH, Tang Y, Roy S . Activity-induced convergence of APP and BACE-1 in acidic microdomains via an endocytosis-dependent pathway. Neuron 2013; 79: 447–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kinoshita A, Fukumoto H, Shah T, Whelan CM, Irizarry MC, Hyman BT . Demonstration by FRET of BACE interaction with the amyloid precursor protein at the cell surface and in early endosomes. J Cell Sci 2003; 116: 3339–3346.

    Article  CAS  PubMed  Google Scholar 

  44. Zhu L, Su M, Lucast L, Liu L, Netzer WJ, Gandy SE et al. Dynamin 1 regulates amyloid generation through modulation of BACE-1. PloS One 2012; 7: e45033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang JY, Miller SJ, Falls DL . The N-terminal region of neuregulin isoforms determines the accumulation of cell surface and released neuregulin ectodomain. J Biol Chem 2001; 276: 2841–2851.

    Article  CAS  PubMed  Google Scholar 

  46. Huang YZ, Won S, Ali DW, Wang Q, Tanowitz M, Du QS et al. Regulation of neuregulin signaling by PSD-95 interacting with ErbB4 at CNS synapses. Neuron 2000; 26: 443–455.

    Article  CAS  PubMed  Google Scholar 

  47. Yin D-M, Huang Y-H, Zhu Y-B, Wang Y . Both the establishment and maintenance of neuronal polarity require the activity of protein kinase D in the Golgi apparatus. J Neurosci 2008; 28: 8832–8843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dobrunz LE, Stevens CF . Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron 1997; 18: 995–1008.

    Article  CAS  PubMed  Google Scholar 

  49. Zucker RS, Regehr WG . Short-term synaptic plasticity. Annu Rev Physiol 2002; 64: 355–405.

    Article  CAS  PubMed  Google Scholar 

  50. Brinkmann BG, Agarwal A, Sereda MW, Garratt AN, Müller T, Wende H et al. Neuregulin-1/ErbB signaling serves distinct functions in myelination of the peripheral and central nervous system. Neuron 2008; 59: 581–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu X, Bates R, Yin D-M, Shen C, Wang F, Su N et al. Specific regulation of NRG1 isoform expression by neuronal activity. J Neurosci 2011; 31: 8491–8501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Freese C, Garratt AN, Fahrenholz F, Endres K . The effects of alpha-secretase ADAM10 on the proteolysis of neuregulin-1. FEBS J 2009; 276: 1568–1580.

    Article  CAS  PubMed  Google Scholar 

  53. Hu X, Hicks CW, He W, Wong P, Macklin WB, Trapp BD et al. Bace1 modulates myelination in the central and peripheral nervous system. Nat Neurosci 2006; 9: 1520–1525.

    Article  CAS  PubMed  Google Scholar 

  54. Cheret C, Willem M, Fricker FR, Wende H, Wulf-Goldenberg A, Tahirovic S et al. Bace1 and Neuregulin-1 cooperate to control formation and maintenance of muscle spindles. EMBO J 2013; 32: 2015–2028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Haass C, Kaether C, Thinakaran G, Sisodia S . Trafficking and Proteolytic Processing of APP. Cold Spring Harb Perspect Med 2012; 2: a006270.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kandalepas PC, Vassar R . Identification and biology of β-secretase. J Neurochem 2012; 120: 55–61.

    Article  CAS  PubMed  Google Scholar 

  57. Loeb JA, Susanto ET, Fischbach GD . The neuregulin precursor proARIA is processed to ARIA after expression on the cell surface by a protein kinase C-enhanced mechanism. Mol Cell Neurosci 1998; 11: 77–91.

    Article  CAS  PubMed  Google Scholar 

  58. Kirchhausen T, Macia E, Pelish HE . Use of dynasore, the small molecule inhibitor of dynamin, in the regulation of endocytosis. Methods Enzymol 2008; 438: 77–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Macia E, Ehrlich M, Massol R, Boucrot E, Brunner C, Kirchhausen T . Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell 2006; 10: 839–850.

    Article  CAS  PubMed  Google Scholar 

  60. Buonanno A . The neuregulin signaling pathway and schizophrenia: from genes to synapses and neural circuits. Brain Res Bull 2010; 83: 122–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mei L, Nave K-A . Neuregulin-ERBB signaling in the nervous system and neuropsychiatric diseases. Neuron 2014; 83: 27–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nave K-A, Salzer JL . Axonal regulation of myelination by neuregulin 1. Curr Opin Neurobiol 2006; 16: 492–500.

    Article  CAS  PubMed  Google Scholar 

  63. Rico B, Marín O . Neuregulin signaling, cortical circuitry development and schizophrenia. Curr Opin Genet Dev 2011; 21: 262–270.

    Article  CAS  PubMed  Google Scholar 

  64. Fleck D, Bebber F, van, Colombo A, Galante C, Schwenk BM, Rabe L et al. Dual Cleavage of Neuregulin 1 Type III by BACE1 and ADAM17 Liberates Its EGF-Like Domain and Allows Paracrine Signaling. J Neurosci 2013; 33: 7856–7869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kalinowski A, Plowes NJR, Huang Q, Berdejo-Izquierdo C, Russell RR, Russell KS . Metalloproteinase-dependent cleavage of neuregulin and autocrine stimulation of vascular endothelial cells. FASEB J 2010; 24: 2567–2575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. La Marca R, Cerri F, Horiuchi K, Bachi A, Feltri ML, Wrabetz L et al. TACE (ADAM17) inhibits Schwann cell myelination. Nat Neurosci 2011; 14: 857–865.

    Article  CAS  PubMed  Google Scholar 

  67. Hu X, He W, Diaconu C, Tang X, Kidd GJ, Macklin WB et al. Genetic deletion of BACE1 in mice affects remyelination of sciatic nerves. FASEB J 2008; 22: 2970–2980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wen D, Suggs SV, Karunagaran D, Liu N, Cupples RL, Luo Y et al. Structural and functional aspects of the multiplicity of Neu differentiation factors. Mol Cell Biol 1994; 14: 1909–1919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dejaegere T, Serneels L, Schäfer MK, Biervliet JV, Horré K, Depboylu C et al. Deficiency of Aph1B/C-γ-secretase disturbs Nrg1 cleavage and sensorimotor gating that can be reversed with antipsychotic treatment. Proc Natl Acad Sci U S A 2008; 105: 9775–9780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang J-M, Zhang J, Chen X-J, Geng H-Y, Ye M, Spitzer NC et al. Development of GABA circuitry of fast-spiking basket interneurons in the medial prefrontal cortex of erbb4- mutant mice. J Neurosci 2013; 33: 19724–19733.

    Article  CAS  PubMed  Google Scholar 

  71. Cheung G, Cousin MA . Adaptor protein complexes 1 and 3 are essential for generation of synaptic vesicles from activity-dependent bulk endosomes. J Neurosci 2012; 32: 6014–6023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Clayton EL, Cousin MA . The molecular physiology of activity-dependent bulk endocytosis of synaptic vesicles. J Neurochem 2009; 111: 901–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Haucke V, Neher E, Sigrist SJ . Protein scaffolds in the coupling of synaptic exocytosis and endocytosis. Nat Rev Neurosci 2011; 12: 127–138.

    Article  CAS  PubMed  Google Scholar 

  74. Saneyoshi T, Fortin DA, Soderling TR . Regulation of spine and synapse formation by activity-dependent intracellular signaling pathways. Curr Opin Neurobiol 2010; 20: 108–115.

    Article  CAS  PubMed  Google Scholar 

  75. Craddock N, O’Donovan MC, Owen MJ . The genetics of schizophrenia and bipolar disorder: dissecting psychosis. J Med Genet 2005; 42: 193–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from National Institute of Mental Health (NIH) (LM), NARSAD Distinguished Investigator Award (LM), GRA Eminent Scholar in Neuroscience (LM), NASARD Young Investigator Award (D-MY) and AHA postdoctoral fellowship (Y-JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Mei.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, DM., Chen, YJ., Liu, S. et al. Calcyon stimulates neuregulin 1 maturation and signaling. Mol Psychiatry 20, 1251–1260 (2015). https://doi.org/10.1038/mp.2014.131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.131

This article is cited by

Search

Quick links