Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

Molecular psychiatry of zebrafish

Abstract

Due to their well-characterized neural development and high genetic homology to mammals, zebrafish (Danio rerio) have emerged as a powerful model organism in the field of biological psychiatry. Here, we discuss the molecular psychiatry of zebrafish, and its implications for translational neuroscience research and modeling central nervous system (CNS) disorders. In particular, we outline recent genetic and technological developments allowing for in vivo examinations, high-throughput screening and whole-brain analyses in larval and adult zebrafish. We also summarize the application of these molecular techniques to the understanding of neuropsychiatric disease, outlining the potential of zebrafish for modeling complex brain disorders, including attention-deficit/hyperactivity disorder (ADHD), aggression, post-traumatic stress and substance abuse. Critically evaluating the advantages and limitations of larval and adult fish tests, we suggest that zebrafish models become a rapidly emerging new field in modern molecular psychiatry research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. WHO. The Global Burden of Disease: 2004 Update. WHO (World Health Organization): Geneva, Switzerland, 2008.

  2. Griebel G, Holmes A . 50 years of hurdles and hope in anxiolytic drug discovery. Nat Rev Drug Discov 2013; 12: 667–687.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gonzales ML, LaSalle JM . The role of MeCP2 in brain development and neurodevelopmental disorders. Curr Psychiatry Rep 2010; 12: 127–134.

    PubMed  PubMed Central  Google Scholar 

  4. Xu B, Ionita-Laza I, Roos JL, Boone B, Woodrick S, Sun Y et al. De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nat Genet 2012; 44: 1365–1369.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mitchell K . The miswired brain: making connections from neurodevelopment to psychopathology. BMC Biol 2011; 9: 23.

    PubMed  PubMed Central  Google Scholar 

  6. Duman RS, Heninger GR, Nestler EJ . Molecular psychiatry. Adaptations of receptor-coupled signal transduction pathways underlying stress- and drug-induced neural plasticity. J Nerv Ment Dis 1994; 182: 692–700.

    CAS  PubMed  Google Scholar 

  7. Nestler EJ . The origins of molecular psychiatry. J Mol Psychiatry 2013; 1: 3.

    PubMed  PubMed Central  Google Scholar 

  8. Kalueff AV, Wheaton M, Murphy DL . What's wrong with my mouse model? Advances and strategies in animal modeling of anxiety and depression. Behav Brain Res 2007; 179: 1–18.

    CAS  PubMed  Google Scholar 

  9. Kalueff AV, Echevarria DJ, Stewart AM . Gaining translational momentum: More zebrafish models for neuroscience research. Progr Neuropsychopharmacol Biol Psychiatry 2014 pii S0278-5846: 00037–2.

    Google Scholar 

  10. Kalueff AV, Stewart AM, Gerlai R . Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci 2014; 35: 63–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Stewart AM, Braubach O, Spitsbergen J, Gerlai R, Kalueff AV . Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci 2014; 37: 264–278.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013; 496: 498–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zu Y, Tong X, Wang Z, Liu D, Pan R, Li Z et al. TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods 2013; 10: 329–331.

    CAS  PubMed  Google Scholar 

  14. Kaslin J, Panula P . Comparative anatomy of the histaminergic and other aminergic systems in the zebrafish (Danio rerio). J Comp Neurol 2001; 440: 342–377.

    CAS  PubMed  Google Scholar 

  15. Sallinen V, Sundvik M, Reenila I, Peitsaro N, Khrustalyov D, Anichtchik O et al. Hyperserotonergic phenotype after monoamine oxidase inhibition in larval zebrafish. J Neurochem 2009; 109: 403–415.

    CAS  PubMed  Google Scholar 

  16. Sundvik M, Panula P . Organization of the histaminergic system in adult zebrafish (Danio rerio) brain: neuron number, location, and cotransmitters. J Comp Neurol 2012; 520: 3827–3845.

    CAS  PubMed  Google Scholar 

  17. Maximino C, Herculano AM . A review of monoaminergic neuropsychopharmacology in zebrafish. Zebrafish 2010; 7: 359–378.

    CAS  PubMed  Google Scholar 

  18. Filippi A, Mueller T, Driever W . Vglut2 and gad expression reveal distinct patterns of dual GABAergic versus glutamatergic cotransmitter phenotypes of dopaminergic and noradrenergic neurons in the zebrafish brain. J Comp Neurol 2014; 522: 2019–2037.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Higashijima S, Mandel G, Fetcho JR . Distribution of prospective glutamatergic, glycinergic, and GABAergic neurons in embryonic and larval zebrafish. J Comp Neurol 2004; 480: 1–18.

    CAS  PubMed  Google Scholar 

  20. Haug MF, Gesemann M, Mueller T, Neuhauss SC . Phylogeny and expression divergence of metabotropic glutamate receptor genes in the brain of zebrafish (Danio rerio). J Comp Neurol 2013; 521: 1533–1560.

    CAS  PubMed  Google Scholar 

  21. Rico EP, de Oliveira DL, Rosemberg DB, Mussulini BH, Bonan CD, Dias RD et al. Expression and functional analysis of Na(+)-dependent glutamate transporters from zebrafish brain. Brain Res Bull 2010; 81: 517–523.

    CAS  PubMed  Google Scholar 

  22. Brambilla P, Perez J, Barale F, Schettini G, Soares JC . GABAergic dysfunction in mood disorders. Mol Psychiatry 2003; 8: 721–737, 715.

    CAS  PubMed  Google Scholar 

  23. Benes FM, Berretta S . GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 2001; 25: 1–27.

    CAS  PubMed  Google Scholar 

  24. Edden RA, Crocetti D, Zhu H, Gilbert DL, Mostofsky SH . Reduced GABA concentration in attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 2012; 69: 750–753.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mueller T, Guo S . The distribution of GAD67-mRNA in the adult zebrafish (teleost) forebrain reveals a prosomeric pattern and suggests previously unidentified homologies to tetrapods. J Comp Neurol 2009; 516: 553–568.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Delgado L, Schmachtenberg O . Immunohistochemical localization of GABA, GAD65, and the receptor subunits GABAAalpha1 and GABAB1 in the zebrafish cerebellum. Cerebellum 2008; 7: 444–450.

    CAS  PubMed  Google Scholar 

  27. Doldan MJ, Prego B, Holmqvist BI, de Miguel E . Distribution of GABA-immunolabeling in the early zebrafish (Danio rerio) brain. Eur J Morphol 1999; 37: 126–129.

    CAS  PubMed  Google Scholar 

  28. Mueller T, Vernier P, Wullimann MF . A phylotypic stage in vertebrate brain development: GABA cell patterns in zebrafish compared with mouse. J Comp Neurol 2006; 494: 620–634.

    CAS  PubMed  Google Scholar 

  29. Kim YJ, Nam RH, Yoo YM, Lee CJ . Identification and functional evidence of GABAergic neurons in parts of the brain of adult zebrafish (Danio rerio). Neurosci Lett 2004; 355: 29–32.

    CAS  PubMed  Google Scholar 

  30. McLean DL, Fetcho JR . Ontogeny and innervation patterns of dopaminergic, noradrenergic, and serotonergic neurons in larval zebrafish. J Comp Neurol 2004; 480: 38–56.

    PubMed  Google Scholar 

  31. Rink E, Wullimann MF . The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum). Brain Res 2001; 889: 316–330.

    CAS  PubMed  Google Scholar 

  32. Yamamoto K, Ruuskanen JO, Wullimann MF, Vernier P . Two tyrosine hydroxylase genes in vertebrates New dopaminergic territories revealed in the zebrafish brain. Mol Cell Neurosci 2010; 43: 394–402.

    CAS  PubMed  Google Scholar 

  33. Holzschuh J, Ryu S, Aberger F, Driever W . Dopamine transporter expression distinguishes dopaminergic neurons from other catecholaminergic neurons in the developing zebrafish embryo. Mech Dev 2001; 101: 237–243.

    CAS  PubMed  Google Scholar 

  34. Yamamoto K, Ruuskanen JO, Wullimann MF, Vernier P . Differential expression of dopaminergic cell markers in the adult zebrafish forebrain. J Comp Neurol 2011; 519: 576–598.

    CAS  PubMed  Google Scholar 

  35. Boehmler W, Obrecht-Pflumio S, Canfield V, Thisse C, Thisse B, Levenson R . Evolution and expression of D2 and D3 dopamine receptor genes in zebrafish. Dev Dyn 2004; 230: 481–493.

    CAS  PubMed  Google Scholar 

  36. Li P, Shah S, Huang L, Carr AL, Gao Y, Thisse C et al. Cloning and spatial and temporal expression of the zebrafish dopamine D1 receptor. Dev Dyn 2007; 236: 1339–1346.

    CAS  PubMed  Google Scholar 

  37. Tay TL, Ronneberger O, Ryu S, Nitschke R, Driever W . Comprehensive catecholaminergic projectome analysis reveals single-neuron integration of zebrafish ascending and descending dopaminergic systems. Nat Commun 2011; 2: 171.

    PubMed  Google Scholar 

  38. Ma PM . Catecholaminergic systems in the zebrafish. I. Number, morphology, and histochemical characteristics of neurons in the locus coeruleus. J Comp Neurol 1994; 344: 242–255.

    CAS  PubMed  Google Scholar 

  39. Ma PM . Catecholaminergic systems in the zebrafish. II. Projection pathways and pattern of termination of the locus coeruleus. J Comp Neurol 1994; 344: 256–269.

    CAS  PubMed  Google Scholar 

  40. Schweitzer J, Lohr H, Filippi A, Driever W . Dopaminergic and noradrenergic circuit development in zebrafish. Dev Neurobiol 2012; 72: 256–268.

    CAS  PubMed  Google Scholar 

  41. Peitsaro N, Sundvik M, Anichtchik OV, Kaslin J, Panula P . Identification of zebrafish histamine H1, H2 and H3 receptors and effects of histaminergic ligands on behavior. Biochem Pharmacol 2007; 73: 1205–1214.

    CAS  PubMed  Google Scholar 

  42. Eriksson KS, Peitsaro N, Karlstedt K, Kaslin J, Panula P . Development of the histaminergic neurons and expression of histidine decarboxylase mRNA in the zebrafish brain in the absence of all peripheral histaminergic systems. Eur J Neurosci 1998; 10: 3799–3812.

    CAS  PubMed  Google Scholar 

  43. Lucki I . The spectrum of behaviors influenced by serotonin. Biol Psychiatry 1998; 44: 151–162.

    CAS  PubMed  Google Scholar 

  44. Norton WH, Folchert A, Bally-Cuif L . Comparative analysis of serotonin receptor (HTR1A/HTR1B families) and transporter (slc6a4a/b) gene expression in the zebrafish brain. J Comp Neurol 2008; 511: 521–542.

    CAS  PubMed  Google Scholar 

  45. Schneider H, Fritzky L, Williams J, Heumann C, Yochum M, Pattar K et al. Cloning and expression of a zebrafish 5-HT(2C) receptor gene. Gene 2012; 502: 108–117.

    CAS  PubMed  Google Scholar 

  46. Sallinen V, Sundvik M, Reenila I, Peitsaro N, Khrustalyov D, Anichtchik O et al. Hyperserotonergic phenotype after monoamine oxidase inhibition in larval zebrafish. J Neurochem 2009; 109: 403–415.

    CAS  PubMed  Google Scholar 

  47. Lillesaar C, Stigloher C, Tannhauser B, Wullimann MF, Bally-Cuif L . Axonal projections originating from raphe serotonergic neurons in the developing and adult zebrafish, Danio rerio, using transgenics to visualize raphe-specific pet1 expression. J Comp Neurol 2009; 512: 158–182.

    CAS  PubMed  Google Scholar 

  48. Drapeau P, Saint-Amant L, Buss RR, Chong M, McDearmid JR, Brustein E . Development of the locomotor network in zebrafish. Prog Neurobiol 2002; 68: 85–111.

    CAS  PubMed  Google Scholar 

  49. Rink E, Guo S . The too few mutant selectively affects subgroups of monoaminergic neurons in the zebrafish forebrain. Neuroscience 2004; 127: 147–154.

    CAS  PubMed  Google Scholar 

  50. Teraoka H, Russell C, Regan J, Chandrasekhar A, Concha ML, Yokoyama R et al. Hedgehog and Fgf signaling pathways regulate the development of tphR-expressing serotonergic raphe neurons in zebrafish embryos. J Neurobiol 2004; 60: 275–288.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bellipanni G, Rink E, Bally-Cuif L . Cloning of two tryptophan hydroxylase genes expressed in the diencephalon of the developing zebrafish brain. Mech Dev 2002; 119 Suppl 1: S215–S220.

    PubMed  Google Scholar 

  52. Wang Y, Takai R, Yoshioka H, Shirabe K . Characterization and expression of serotonin transporter genes in zebrafish. Tohoku J Exp Med 2006; 208: 267–274.

    CAS  PubMed  Google Scholar 

  53. Yamamoto K, Vernier P . The evolution of dopamine systems in chordates. Front Neuroanat 2011; 5: 21.

    PubMed  PubMed Central  Google Scholar 

  54. Lillesaar C . The serotonergic system in fish. J Chem Neuroanat 2011; 41: 294–308.

    CAS  PubMed  Google Scholar 

  55. Hsieh DJ, Liao CF . Zebrafish M2 muscarinic acetylcholine receptor: cloning, pharmacological characterization, expression patterns and roles in embryonic bradycardia. Br J Pharmacol 2002; 137: 782–792.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Papke RL, Ono F, Stokes C, Urban JM, Boyd RT . The nicotinic acetylcholine receptors of zebrafish and an evaluation of pharmacological tools used for their study. Biochem Pharmacol 2012; 84: 352–365.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Klee EW, Schneider H, Clark KJ, Cousin MA, Ebbert JO, Hooten WM et al. Zebrafish: a model for the study of addiction genetics. Hum Genet 2012; 131: 977–1008.

    CAS  PubMed  Google Scholar 

  58. Arenzana FJ, Clemente D, Sanchez-Gonzalez R, Porteros n, Aijon J, Arevalo R . Development of the cholinergic system in the brain and retina of the zebrafish. Brain Res Bull 2005; 66: 421–425.

    CAS  PubMed  Google Scholar 

  59. Clemente D, Porteros A, Weruaga E, Alonso JR, Arenzana FJ, Aijun J et al. Cholinergic elements in the zebrafish central nervous system: Histochemical and immunohistochemical analysis. J Comp Neurol 2004; 474: 75–107.

    PubMed  Google Scholar 

  60. Postlethwait JH, Yan YL, Gates MA, Horne S, Amores A, Brownlie A et al. Vertebrate genome evolution and the zebrafish gene map. Nat Genet 1998; 18: 345–349.

    CAS  PubMed  Google Scholar 

  61. Fredriksson R, Schioth HB . The repertoire of G-protein-coupled receptors in fully sequenced genomes. Mol Pharmacol 2005; 67: 1414–1425.

    CAS  PubMed  Google Scholar 

  62. Panula P, Chen YC, Priyadarshini M, Kudo H, Semenova S, Sundvik M et al. The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol Dis 2010; 40: 46–57.

    CAS  PubMed  Google Scholar 

  63. Ruuskanen JO, Xhaard H, Marjamaki A, Salaneck E, Salminen T, Yan YL et al. Identification of duplicated fourth alpha2-adrenergic receptor subtype by cloning and mapping of five receptor genes in zebrafish. Mol Biol Evol 2004; 21: 14–28.

    CAS  PubMed  Google Scholar 

  64. Ruuskanen JO, Laurila J, Xhaard H, Rantanen VV, Vuoriluoto K, Wurster S et al. Conserved structural, pharmacological and functional properties among the three human and five zebrafish alpha 2-adrenoceptors. Br J Pharmacol 2005; 144: 165–177.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ruuskanen JO, Peitsaro N, Kaslin JV, Panula P, Scheinin M . Expression and function of alpha-adrenoceptors in zebrafish: drug effects, mRNA and receptor distributions. J Neurochem 2005; 94: 1559–1569.

    CAS  PubMed  Google Scholar 

  66. Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 2008; 26: 702–708.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Moens CB, Donn TM, Wolf-Saxon ER, Ma TP . Reverse genetics in zebrafish by TILLING. Brief Funct Genomic Proteomic 2008; 7: 454–459.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Peravali R, Gehrig J, Giselbrecht S, Lutjohann DS, Hadzhiev Y, Muller F et al. Automated feature detection and imaging for high-resolution screening of zebrafish embryos. Biotechniques 2011; 50: 319–324.

    CAS  PubMed  Google Scholar 

  69. Pardo-Martin C, Chang TY, Koo BK, Gilleland CL, Wasserman SC, Yanik MF . High-throughput in vivo vertebrate screening. Nat Methods 2010; 7: 634–636.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Akerboom J, Chen TW, Wardill TJ, Tian L, Marvin JS, Mutlu S et al. Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci 2012; 32: 13819–13840.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Scott EK, Mason L, Arrenberg AB, Ziv L, Gosse NJ, Xiao T et al. Targeting neural circuitry in zebrafish using GAL4 enhancer trapping. Nat Methods 2007; 4: 323–326.

    CAS  PubMed  Google Scholar 

  72. Kawakami K, Takeda H, Kawakami N, Kobayashi M, Matsuda N, Mishina M . A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 2004; 7: 133–144.

    CAS  PubMed  Google Scholar 

  73. Ahrens MB, Orger MB, Robson DN, Li JM, Keller PJ . Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat Methods 2013; 10: 413–420.

    CAS  PubMed  Google Scholar 

  74. Kubo F, Hablitzel B, Dal Maschio M, Driever W, Baier H, Arrenberg AB . Functional architecture of an optic flow-responsive area that drives horizontal eye movements in zebrafish. Neuron 2014; 81: 1344–1359.

    CAS  PubMed  Google Scholar 

  75. Huang KH, Ahrens MB, Dunn TW, Engert F . Spinal projection neurons control turning behaviors in zebrafish. Curr Biol 2013; 23: 1566–1573.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Tye KM, Deisseroth K . Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 2012; 13: 251–266.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Pan YA, Livet J, Sanes JR, Lichtman JW, Schier AF . Multicolor Brainbow imaging in zebrafish. Cold Spring Harb Protoc 2011; 2011pdb prot5546.

  78. Geschwind DH . Genetics of autism spectrum disorders. Trends Cogn Sci 2011; 15: 409–416.

    PubMed  PubMed Central  Google Scholar 

  79. Weinberger DR . From neuropathology to neurodevelopment. Lancet 1995; 346: 552–557.

    CAS  PubMed  Google Scholar 

  80. Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 2007; 450: 56–62.

    CAS  PubMed  Google Scholar 

  81. Cai D, Cohen KB, Luo T, Lichtman JW, Sanes JR . Improved tools for the Brainbow toolbox. Nat Methods 2013; 10: 540–547.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Pan YA, Freundlich T, Weissman TA, Schoppik D, Wang XC, Zimmerman S et al. Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish. Development 2013; 140: 2835–2846.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Gubernator NG, Zhang H, Staal RG, Mosharov EV, Pereira DB, Yue M et al. Fluorescent false neurotransmitters visualize dopamine release from individual presynaptic terminals. Science 2009; 324: 1441–1444.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Rodriguez PC, Pereira DB, Borgkvist A, Wong MY, Barnard C, Sonders MS et al. Fluorescent dopamine tracer resolves individual dopaminergic synapses and their activity in the brain. Proc Natl Acad Sci USA 2013; 110: 870–875.

    CAS  PubMed  Google Scholar 

  85. Okubo Y, Sekiya H, Namiki S, Sakamoto H, Iinuma S, Yamasaki M et al. Imaging extrasynaptic glutamate dynamics in the brain. Proc Natl Acad Sci USA 2010; 107: 6526–6531.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Marvin JS, Borghuis BG, Tian L, Cichon J, Harnett MT, Akerboom J et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat Methods 2013; 10: 162–170.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Nguyen QT, Schroeder LF, Mank M, Muller A, Taylor P, Griesbeck O et al. An in vivo biosensor for neurotransmitter release and in situ receptor activity. Nat Neurosci 2010; 13: 127–132.

    CAS  PubMed  Google Scholar 

  88. White RM, Sessa A, Burke C, Bowman T, LeBlanc J, Ceol C et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2008; 2: 183–189.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Dodt H-U, Leischner U, Schierloh A, Jahrling N, Mauch CP, Deininger K et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods 2007; 4: 331–336.

    CAS  PubMed  Google Scholar 

  90. Erturk A, Mauch CP, Hellal F, Forstner F, Keck T, Becker K et al. Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury. Nat Med 2012; 18: 166–171.

    Google Scholar 

  91. Hama H, Kurokawa H, Kawano H, Ando R, Shimogori T, Noda H et al. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci 2011; 14: 1481–1488.

    CAS  PubMed  Google Scholar 

  92. Erturk A, Becker K, Jahrling N, Mauch CP, Hojer CD, Egen JG et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc 2012; 7: 1983–1995.

    CAS  PubMed  Google Scholar 

  93. Chung K, Wallace J, Kim SY, Kalyanasundaram S, Andalman AS, Davidson TJ et al. Structural and molecular interrogation of intact biological systems. Nature 2013; 497: 332–337.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ke MT, Fujimoto S, Imai T . SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci 2013; 16: 1154–1161.

    CAS  PubMed  Google Scholar 

  95. Kuwajima T, Sitko AA, Bhansali P, Jurgens C, Guido W, Mason C . ClearT: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue. Development 2013; 140: 1364–1368.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Susaki EA, Tainaka K, Perrin D, Kishino F, Tawara T, Watanabe TM et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 2014; 157: 726–739.

    CAS  PubMed  Google Scholar 

  97. Seo HC, Saetre BO, Havik B, Ellingsen S, Fjose A . The zebrafish Pax3 and Pax7 homologues are highly conserved, encode multiple isoforms and show dynamic segment-like expression in the developing brain. Mech Dev 1998; 70: 49–63.

    CAS  PubMed  Google Scholar 

  98. Moore S, Ribes V, Terriente J, Wilkinson D, Relaix F, Briscoe J . Distinct regulatory mechanisms act to establish and maintain Pax3 expression in the developing neural tube. PLoS Genet 2013; 9: e1003811.

    PubMed  PubMed Central  Google Scholar 

  99. Garnett AT, Square TA, Medeiros DM . BMP, Wnt and FGF signals are integrated through evolutionarily conserved enhancers to achieve robust expression of Pax3 and Zic genes at the zebrafish neural plate border. Development 2012; 139: 4220–4231.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Fernandes AM, Beddows E, Filippi A, Driever W . Orthopedia transcription factor otpa and otpb paralogous genes function during dopaminergic and neuroendocrine cell specification in larval zebrafish. PLoS ONE 2013; 8: e75002.

    CAS  Google Scholar 

  101. Ryu S, Mahler J, Acampora D, Holzschuh J, Erhardt S, Omodei D et al. Orthopedia homeodomain protein is essential for diencephalic dopaminergic neuron development. Curr Biol: CB 2007; 17: 873–880.

    CAS  PubMed  Google Scholar 

  102. Kastenhuber E, Kratochwil CF, Ryu S, Schweitzer J, Driever W . Genetic dissection of dopaminergic and noradrenergic contributions to catecholaminergic tracts in early larval zebrafish. J Comp Neurol 2010; 518: 439–458.

    CAS  PubMed  Google Scholar 

  103. Zhang P, Hirsch EC, Damier P, Duyckaerts C, Javoy-Agid F . c-fos protein-like immunoreactivity: distribution in the human brain and over-expression in the hippocampus of patients with Alzheimer's disease. Neuroscience 1992; 46: 9–21.

    CAS  PubMed  Google Scholar 

  104. Singewald N . Altered brain activity processing in high-anxiety rodents revealed by challenge paradigms and functional mapping. Neurosci Biobehav Rev 2007; 31: 18–40.

    PubMed  Google Scholar 

  105. Singewald N, Salchner P, Sharp T . Induction of c-Fos expression in specific areas of the fear circuitry in rat forebrain by anxiogenic drugs. Biol Psychiatry 2003; 53: 275–283.

    CAS  PubMed  Google Scholar 

  106. Baraban SC, Taylor MR, Castro PA, Baier H . Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience 2005; 131: 759–768.

    CAS  PubMed  Google Scholar 

  107. Ellis LD, Seibert J, Soanes KH . Distinct models of induced hyperactivity in zebrafish larvae. Brain Res 2012; 1449: 46–59.

    CAS  PubMed  Google Scholar 

  108. Cachat J, Kyzar EJ, Collins C, Gaikwad S, Green J, Roth A et al. Unique and potent effects of acute ibogaine on zebrafish: the developing utility of novel aquatic models for hallucinogenic drug research. Behav Brain Res 2013; 236: 258–269.

    CAS  PubMed  Google Scholar 

  109. Riehl R, Kyzar E, Allain A, Green J, Hook M, Monnig L et al. Behavioral and physiological effects of acute ketamine exposure in adult zebrafish. Neurotoxicol Teratol 2011; 33: 658–667.

    CAS  PubMed  Google Scholar 

  110. Lau BY, Mathur P, Gould GG, Guo S . Identification of a brain center whose activity discriminates a choice behavior in zebrafish. Proc Natl Acad Sci USA 2011; 108: 2581–2586.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. von Trotha JW, Vernier P, Bally-Cuif L . Emotions and motivated behavior converge on an amygdala-like structure in the zebrafish. Eur J Neurosci 2014 (in press).

  112. Virdee K, Cumming P, Caprioli D, Jupp B, Rominger A, Aigbirhio FI et al. Applications of positron emission tomography in animal models of neurological and neuropsychiatric disorders. Neurosci Biobehav Rev 2012; 36: 1188–1216.

    PubMed  Google Scholar 

  113. Arnsten AF, Rubia K . Neurobiological circuits regulating attention, cognitive control, motivation, and emotion: disruptions in neurodevelopmental psychiatric disorders. J Am Acad Child Adolesc Psychiatry 2012; 51: 356–367.

    PubMed  Google Scholar 

  114. Mullins MC, Hammerschmidt M, Haffter P, Nüsslein-Volhard C . Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr Biol 1994; 4: 189–202.

    CAS  PubMed  Google Scholar 

  115. Amsterdam A, Burgess S, Golling G, Chen W, Sun Z, Townsend K et al. A large-scale insertional mutagenesis screen in zebrafish. Genes Dev 1999; 13: 2713–2724.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Petzold AM, Balciunas D, Sivasubbu S, Clark KJ, Bedell VM, Westcot SE et al. Nicotine response genetics in the zebrafish. Proc Natl Acad Sci 2009; 106: 18662–18667.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 2013; 31: 227–229.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Barkley RA, Fischer M, Smallish L, Fletcher K . Young adult outcome of hyperactive children: adaptive functioning in major life activities. J Am Acad Child Adolesc Psychiatry 2006; 45: 192–202.

    PubMed  Google Scholar 

  119. Schmidt S, Petermann F . Developmental psychopathology: Attention Deficit Hyperactivity Disorder (ADHD). BMC Psychiatry 2009; 9: 58.

    PubMed  PubMed Central  Google Scholar 

  120. Berquin PC, Giedd JN, Jacobsen LK, Hamburger SD, Krain AL, Rapoport JL et al. Cerebellum in attention-deficit hyperactivity disorder: a morphometric MRI study. Neurology 1998; 50: 1087–1093.

    CAS  PubMed  Google Scholar 

  121. Arnsten AF . Catecholamine and second messenger influences on prefrontal cortical networks of "representational knowledge": a rational bridge between genetics and the symptoms of mental illness. Cereb Cortex 2007; 17 Suppl 1: i6–15.

    PubMed  Google Scholar 

  122. Bush G . Attention-deficit/hyperactivity disorder and attention networks. Neuropsychopharmacology 2010; 35: 278–300.

    PubMed  Google Scholar 

  123. Rubia K . "Cool" inferior frontostriatal dysfunction in attention-deficit/hyperactivity disorder versus "hot" ventromedial orbitofrontal-limbic dysfunction in conduct disorder: a review. Biol Psychiatry 2011; 69: e69–e87.

    PubMed  Google Scholar 

  124. Arcos-Burgos M, Jain M, Acosta MT, Shively S, Stanescu H, Wallis D et al. A common variant of the latrophilin 3 gene, LPHN3, confers susceptibility to ADHD and predicts effectiveness of stimulant medication. Mol Psychiatry 2010; 15: 1053–1066.

    CAS  PubMed  Google Scholar 

  125. Lange M, Norton W, Coolen M, Chaminade M, Merker S, Proft F et al. The ADHD-linked gene Lphn3.1 controls locomotor activity and impulsivity in zebrafish. Mol Psychiatry 2012; 17: 855.

    CAS  PubMed  Google Scholar 

  126. Lange M, Norton W, Coolen M, Chaminade M, Merker S, Proft F et al. The ADHD-susceptibility gene lphn3.1 modulates dopaminergic neuron formation and locomotor activity during zebrafish development. Mol Psychiatry 2012; 17: 946–954.

    CAS  PubMed  Google Scholar 

  127. Tay TL, Ronneberger O, Ryu S, Nitschke R, Driever W . Comprehensive catecholaminergic projectome analysis reveals single-neuron integration of zebrafish ascending and descending dopaminergic systems. Nat Commun 2011; 2: 171.

    PubMed  Google Scholar 

  128. Lange M, Norton W, Coolen M, Chaminade M, Merker S, Proft F et al. The ADHD-susceptibility gene lphn3.1 modulates dopaminergic neuron formation and locomotor activity during zebrafish development. Mol Psychiatry 2012; 17: 946–954.

    CAS  PubMed  Google Scholar 

  129. Wallis D, Hill DS, Mendez IA, Abbott LC, Finnell RH, Wellman PJ et al. Initial characterization of mice null for Lphn3, a gene implicated in ADHD and addiction. Brain Res 2012; 1463: 85–92.

    CAS  PubMed  Google Scholar 

  130. Hoffman K, Webster TF, Weisskopf MG, Weinberg J, Vieira VM . Exposure to polyfluoroalkyl chemicals and attention deficit/hyperactivity disorder in U.S. children 12-15 years of age. Environ Health Perspect 2010; 118: 1762–1767.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Spulber S, Kilian P, Wan Ibrahim WN, Onishchenko N, Ulhaq M, Norrgren L et al. PFOS induces behavioral alterations, including spontaneous hyperactivity that is corrected by dexamfetamine in zebrafish larvae. PLoS ONE 2014; 9: e94227.

    PubMed  PubMed Central  Google Scholar 

  132. Levin ED, Sledge D, Roach S, Petro A, Donerly S, Linney E . Persistent behavioral impairment caused by embryonic methylphenidate exposure in zebrafish. Neurotoxicol Teratol 2011; 33: 668–673.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Gerlai R, Lahav M, Guo S, Rosenthal A . Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behav 2000; 67: 773–782.

    CAS  PubMed  Google Scholar 

  134. Oliveira RF, Silva JF, Simoes JM . Fighting zebrafish: characterization of aggressive behavior and winner-loser effects. Zebrafish 2011; 8: 73–81.

    PubMed  Google Scholar 

  135. Kalueff AV, Gebhardt M, Stewart AM, Cachat JM, Brimmer M, Chawla JS et al. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish 2013; 10: 70–86.

    PubMed  PubMed Central  Google Scholar 

  136. Moretz JA, Martins EP, Robison BD . Behavioural syndromes and the evolution of correlated behavior in zebrafish. Behav Ecol 2007; 18: 1–7.

    Google Scholar 

  137. Filby AL, Paull GC, Hickmore TF, Tyler CR . Unravelling the neurophysiological basis of aggression in a fish model. BMC Genomics 2010; 11: 498.

    PubMed  PubMed Central  Google Scholar 

  138. Larson ET, O'Malley DM, Melloni RH Jr . Aggression and vasotocin are associated with dominant-subordinate relationships in zebrafish. Behav Brain Res 2006; 167: 94–102.

    CAS  PubMed  Google Scholar 

  139. Norton WH, Stumpenhorst K, Faus-Kessler T, Folchert A, Rohner N, Harris MP et al. Modulation of Fgfr1a signaling in zebrafish reveals a genetic basis for the aggression-boldness syndrome. J Neurosci 2011; 31: 13796–13807.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Sneddon LU, Schmidt R, Fang Y, Cossins AR . Molecular correlates of social dominance: a novel role for ependymin in aggression. PLoS ONE 2011; 6: e18181.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Filby AL, Paull GC, Searle F, Ortiz-Zarragoitia M, Tyler CR . Environmental estrogen-induced alterations of male aggression and dominance hierarchies in fish: a mechanistic analysis. Environ Sci Technol 2012; 46: 3472–3479.

    CAS  PubMed  Google Scholar 

  142. Rohner N, Bercsenyi M, Orban L, Kolanczyk ME, Linke D, Brand M et al. Duplication of fgfr1 permits Fgf signaling to serve as a target for selection during domestication. Curr Biol 2009; 19: 1642–1647.

    CAS  PubMed  Google Scholar 

  143. Thisse B, Thisse C . Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev Biol 2005; 287: 390–402.

    CAS  PubMed  Google Scholar 

  144. Caramillo EM, Khan KM, Collier AD, Echevarria DJ . Modeling PTSD in the zebrafish: Are we there yet? Behav Brain Res 2014; pii S0166-4328: 00296–4.

    Google Scholar 

  145. Stewart AM, Yang E, Nguyen M, Kalueff AV . Developing zebrafish models relevant to PTSD and other trauma- and stressor-related disorders. Prog Neuropsychopharmacol Biol Psychiatry 2014; pii S0278-5846: 00153–00155.

    Google Scholar 

  146. Bass SL, Gerlai R . Zebrafish (Danio rerio) responds differentially to stimulus fish: the effects of sympatric and allopatric predators and harmless fish. Behav Brain Res 2008; 186: 107–117.

    PubMed  Google Scholar 

  147. Gerlai R . Zebrafish antipredatory responses: a future for translational research? Behav Brain Res 2010; 207: 223–231.

    PubMed  Google Scholar 

  148. Blank M, Guerim LD, Cordeiro RF, Vianna MR . A one-trial inhibitory avoidance task to zebrafish: rapid acquisition of an NMDA-dependent long-term memory. Neurobiol Learn Mem 2009; 92: 529–534.

    CAS  PubMed  Google Scholar 

  149. Morin C, de Souza Silva MA, Muller CP, Hardigan P, Spieler RE . Active avoidance learning in zebrafish (Danio rerio)—the role of sensory modality and inter-stimulus interval. Behav Brain Res 2013; 248: 141–143.

    PubMed  Google Scholar 

  150. Xu X, Scott-Scheiern T, Kempker L, Simons K . Active avoidance conditioning in zebrafish (Danio rerio). Neurobiol Learn Mem 2007; 87: 72–77.

    CAS  PubMed  Google Scholar 

  151. Pradel G, Schmidt R, Schachner M . Involvement of L1.1 in memory consolidation after active avoidance conditioning in zebrafish. J Neurobiol 2000; 43: 389–403.

    CAS  PubMed  Google Scholar 

  152. Agetsuma M, Aoki T, Aoki R, Okamoto H . Cued fear conditioning in zebrafish (Danio rerio). In: Kalueff AV, Stewart AM (eds). Zebrafish Protocols for Neurobehavioral Research vol. 66. Humana Press: New York, NY, pp 257–264, 2012.

    Google Scholar 

  153. Egan RJ, Bergner CL, Hart PC, Cachat JM, Canavello PR, Elegante MF et al. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res 2009; 205: 38–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Speedie N, Gerlai R . Alarm substance induced behavioral responses in zebrafish (Danio rerio). Behav Brain Res 2008; 188: 168–177.

    CAS  PubMed  Google Scholar 

  155. Wong K, Elegante M, Bartels B, Elkhayat S, Tien D, Roy S et al. Analyzing habituation responses to novelty in zebrafish (Danio rerio). Behav Brain Res 2010; 208: 450–457.

    CAS  PubMed  Google Scholar 

  156. Mahabir S, Chatterjee D, Buske C, Gerlai R . Maturation of shoaling in two zebrafish strains: a behavioral and neurochemical analysis. Behav Brain Res 2013; 247: 1–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Miller N, Gerlai R . Quantification of shoaling behaviour in zebrafish (Danio rerio). Behav Brain Res 2007; 184: 157–166.

    PubMed  Google Scholar 

  158. Miller NY, Gerlai R . Oscillations in shoal cohesion in zebrafish (Danio rerio). Behav Brain Res 2008; 193: 148–151.

    PubMed  PubMed Central  Google Scholar 

  159. Stewart AM, Nguyen M, Wong K, Poudel MK, Kalueff AV . Developing zebrafish models of autism spectrum disorder (ASD). Prog Neuropsychopharmacol Biol Psychiatry 2014; 50: 27–36.

    CAS  PubMed  Google Scholar 

  160. Green J, Collins C, Kyzar EJ, Pham M, Roth A, Gaikwad S et al. Automated high-throughput neurophenotyping of zebrafish social behavior. J Neurosci Methods 2012; 210: 266–271.

    PubMed  Google Scholar 

  161. Pham M, Raymond J, Hester J, Kyzar E, Gaikwad S, Bruce I et al. Assessing social behavior phenotypes in adult zebrafish: shoaling, social preference and mirror biting tests. In: Kalueff AV, Stewart AM (eds). Zebrafish Protocols for Neurobehavioral Research. Humana Press: New York, NY, 2012.

    Google Scholar 

  162. Hageman I, Andersen HS, Jorgensen MB . Post-traumatic stress disorder: a review of psychobiology and pharmacotherapy. Acta Psychiatr Scand 2001; 104: 411–422.

    CAS  PubMed  Google Scholar 

  163. Alderman SL, Bernier NJ . Ontogeny of the corticotropin-releasing factor system in zebrafish. Gen Comp Endocrinol 2009; 164: 61–69.

    CAS  PubMed  Google Scholar 

  164. Alsop D, Vijayan M . The zebrafish stress axis: molecular fallout from the teleost-specific genome duplication event. Gen Comp Endocrinol 2009; 161: 62–66.

    CAS  PubMed  Google Scholar 

  165. Griffiths BB, Schoonheim PJ, Ziv L, Voelker L, Baier H, Gahtan E . A zebrafish model of glucocorticoid resistance shows serotonergic modulation of the stress response. Front Behav Neurosci 2012; 6: 68.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Ziv L, Muto A, Schoonheim PJ, Meijsing SH, Strasser D, Ingraham HA et al. An affective disorder in zebrafish with mutation of the glucocorticoid receptor. Mol Psychiatry 2013; 18: 681–691.

    CAS  PubMed  Google Scholar 

  167. Yehuda R . Biology of posttraumatic stress disorder. J Clin Psychiatry 2001; 62 Suppl 17: 41–46.

    CAS  PubMed  Google Scholar 

  168. Chakravarty S, Reddy BR, Sudhakar SR, Saxena S, Das T, Meghah V et al. Chronic unpredictable stress (CUS)-induced anxiety and related mood disorders in a zebrafish model: altered brain proteome profile implicates mitochondrial dysfunction. PLoS ONE 2013; 8: e63302.

    CAS  Google Scholar 

  169. Gotovac K, Sabioncello A, Rabatic S, Berki T, Dekaris D . Flow cytometric determination of glucocorticoid receptor (GCR) expression in lymphocyte subpopulations: lower quantity of GCR in patients with post-traumatic stress disorder (PTSD). Clin Exp Immunol 2003; 131: 335–339.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Schaaf MJ, Champagne D, van Laanen IH, van Wijk DC, Meijer AH, Meijer OC et al. Discovery of a functional glucocorticoid receptor β-isoform in zebrafish. Endocrinology 2008; 149: 1591–1599.

    CAS  PubMed  Google Scholar 

  171. Mehta D, Binder EB . Gene x environment vulnerability factors for PTSD: the HPA-axis. Neuropharmacology 2012; 62: 654–662.

    CAS  PubMed  Google Scholar 

  172. Alsop D, Vijayan M . The zebrafish stress axis: molecular fallout from the teleost-specific genome duplication event. Gen Comp Endocrinol 2009; 161: 62–66.

    CAS  PubMed  Google Scholar 

  173. Dutton MA, Lee EW, Zukowska Z . NPY and extreme stress: lessons learned from posttraumatic stress disorder. EXS 2006; 95: 213–222.

  174. Nguyen M, Yang E, Neelkantan N, Mikhaylova A, Arnold R, Poudel MK et al. Developing ‘integrative’ zebrafish models of behavioral and metabolic disorders. Behav Brain Res 2013; 256: 172–187.

    PubMed  Google Scholar 

  175. Tyrka A Biomarkers of Risk for Post-Traumatic Stress Disorder (PTSD): DTIC Document. US Army Medical Research and Materiel Command: Fort Detrick, MD, 2011; pp 1–17.

  176. Alazizi A, Liu MY, Williams FE, Kurogi K, Sakakibara Y, Suiko M et al. Identification, characterization, and ontogenic study of a catechol O-methyltransferase from zebrafish. Aquat Toxicol (Amsterdam, Netherlands) 2011; 102: 18–23.

    CAS  Google Scholar 

  177. Aldeco M, Arslan BK, Edmondson DE . Catalytic and inhibitor binding properties of zebrafish monoamine oxidase (zMAO): comparisons with human MAO A and MAO B. Comp Biochem Physiol B Biochem Biol 2011; 159: 78–83.

    Google Scholar 

  178. Mann KD, Hoyt C, Feldman S, Blunt L, Raymond A, Page-McCaw PS . Cardiac response to startle stimuli in larval zebrafish: sympathetic and parasympathetic components. Am J Physiol Regul Integr Comp Physiol 2010; 298: R1288–R1297.

    CAS  PubMed  Google Scholar 

  179. Robinson TE, Berridge KC . The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev 1993; 18: 247–291.

    CAS  PubMed  Google Scholar 

  180. Rink E, Wullimann MF . The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum). Brain Res 2001; 889: 316–330.

    CAS  PubMed  Google Scholar 

  181. Rink E, Wullimann MF . Development of the catecholaminergic system in the early zebrafish brain: an immunohistochemical study. Dev Brain Res 2002; 137: 89–100.

    CAS  Google Scholar 

  182. Klee EW, Ebbert JO, Schneider H, Hurt RD, Ekker SC . Zebrafish for the study of the biological effects of nicotine. Nicotine Tob Res 2011; 13: 301–312.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Darland T, Dowling JE . Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc Natl Acad Sci USA 2001; 98: 11691–11696.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Ninkovic J, Folchert A, Makhankov YV, Neuhauss SC, Sillaber I, Straehle U et al. Genetic identification of AChE as a positive modulator of addiction to the psychostimulant D-amphetamine in zebrafish. J Neurobiol 2006; 66: 463–475.

    CAS  PubMed  Google Scholar 

  185. Kily LJ, Cowe YC, Hussain O, Patel S, McElwaine S, Cotter FE et al. Gene expression changes in a zebrafish model of drug dependency suggest conservation of neuro-adaptation pathways. J Exp Biol 2008; 211: 1623–1634.

    CAS  PubMed  Google Scholar 

  186. Lau B, Bretaud S, Huang Y, Lin E, Guo S . Dissociation of food and opiate preference by a genetic mutation in zebrafish. Genes Brain Behav 2006; 5: 497–505.

    CAS  PubMed  Google Scholar 

  187. Guo S, Wilson SW, Cooke S, Chitnis AB, Driever W, Rosenthal A . Mutations in the zebrafish unmask shared regulatory pathways controlling the development of catecholaminergic neurons. Dev Biol 1999; 208: 473–487.

    CAS  PubMed  Google Scholar 

  188. Levkowitz G, Zeller J, Sirotkin HI, French D, Schilbach S, Hashimoto H et al. Zinc finger protein too few controls the development of monoaminergic neurons. Nat Neurosci 2002; 6: 28–33.

    Google Scholar 

  189. Lau B, Bretaud S, Huang Y, Lin E, Guo S . Dissociation of food and opiate preference by a genetic mutation in zebrafish. Genes Brain Behav 2006; 5: 497–505.

    CAS  PubMed  Google Scholar 

  190. Webb KJ, Norton WH, Trumbach D, Meijer AH, Ninkovic J, Topp S et al. Zebrafish reward mutants reveal novel transcripts mediating the behavioral effects of amphetamine. Genome Biol 2009; 10: R81.

    PubMed  PubMed Central  Google Scholar 

  191. Mathur P, Lau B, Guo S . Conditioned place preference behavior in zebrafish. Nat Protoc 2011; 6: 338–345.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Mathur P, Berberoglu MA, Guo S . Preference for ethanol in zebrafish following a single exposure. Behav Brain Res 2011; 217: 128–133.

    CAS  PubMed  Google Scholar 

  193. Bretaud S, Li Q, Lockwood B, Kobayashi K, Lin E, Guo S . A choice behavior for morphine reveals experience-dependent drug preference and underlying neural substrates in developing larval zebrafish. Neuroscience 2007; 146: 1109–1116.

    CAS  PubMed  Google Scholar 

  194. Ponzoni L, Braida D, Pucci L, Andrea D, Fasoli F, Manfredi I et al. The cytisine derivatives, CC4 and CC26, reduce nicotine-induced conditioned place preference in zebrafish by acting on heteromeric neuronal nicotinic acetylcholine receptors. Psychopharmacology 2014; 1–13 (in press).

  195. Everitt BJ, Robbins TW . Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 2005; 8: 1481–1489.

    CAS  PubMed  Google Scholar 

  196. Pelloux Y, Everitt BJ, Dickinson A . Compulsive drug seeking by rats under punishment: effects of drug taking history. Psychopharmacology 2007; 194: 127–137.

    CAS  PubMed  Google Scholar 

  197. Kily LJM, Cowe YCM, Hussain O, Patel S, McElwaine S, Cotter FE et al. Gene expression changes in a zebrafish model of drug dependency suggest conservation of neuro-adaptation pathways. J Exp Biol 2008; 211: 1623–1634.

    CAS  PubMed  Google Scholar 

  198. Brennan CH, Parmar A, Kily LKM, Ananthathevan A, Doshi A, Patel S et al. Conditioned place preference models of drug dependence and relapse to drug seeking: studies with nicotine and ethanol. Neuromethods 2011; 52: 163–180.

    CAS  Google Scholar 

  199. Shaham Y, Hope BT . The role of neuroadaptations in relapse to drug seeking. Nat Neurosci 2005; 8: 1437–1439.

    CAS  PubMed  Google Scholar 

  200. Navarro HJ, Doran CM, Shakeshaft AP . Measuring costs of alcohol harm to others: a review of the literature. Drug Alcohol Depend 2011; 114: 87–99.

    PubMed  Google Scholar 

  201. Tran S, Gerlai R . Recent advances with a novel model organism: alcohol tolerance and sensitization in zebrafish (Danio rerio). Prog Neuropsychopharmacol Biol Psychiatry 2014; pii S0278-5846: 00038–4.

    Google Scholar 

  202. Miller N, Greene K, Dydinski A, Gerlai R . Effects of nicotine and alcohol on zebrafish (Danio rerio) shoaling. Behav Brain Res 2013; 240: 192–196.

    CAS  PubMed  Google Scholar 

  203. Gerlai R, Chatterjee D, Pereira T, Sawashima T, Krishnannair R . Acute and chronic alcohol dose: population differences in behavior and neurochemistry of zebrafish. Genes Brain Behav 2009; 8: 586–599.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Tran S, Chatterjee D, Gerlai R . An integrative analysis of ethanol tolerance and withdrawal in zebrafish (Danio rerio). Behav Brain Res 2014; pii S0166-4328: 00109–0.

    Google Scholar 

  205. Fernandes Y, Tran S, Abraham E, Gerlai R . Embryonic alcohol exposure impairs associative learning performance in adult zebrafish. Behav Brain Res 2014; 265: 181–187.

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Pan Y, Kaiguo M, Razak Z, Westwood JT, Gerlai R . Chronic alcohol exposure induced gene expression changes in the zebrafish brain. Behav Brain Res 2011; 216: 66–76.

    CAS  PubMed  Google Scholar 

  207. Barkley RA . Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 1997; 121: 65.

    PubMed  Google Scholar 

  208. Dalley JW, Cardinal RN, Robbins TW . Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 2004; 28: 771–784.

    CAS  PubMed  Google Scholar 

  209. Urcelay GP, Dalley JW . Linking ADHD, impulsivity, and drug abuse: a neuropsychological perspective. Curr Top Behav Neurosci 2012; 9: 173–197.

    PubMed  Google Scholar 

  210. Clayton IC, Richards JC, Edwards CJ . Selective attention in obsessive‚ compulsive disorder. J Abnorm Psychol 1999; 108: 171.

    CAS  PubMed  Google Scholar 

  211. Belin D, Mar AC, Dalley JW, Robbins TW, Everitt BJ . High impulsivity predicts the switch to compulsive cocaine-taking. Science 2008; 320: 1352–1355.

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Molander AC, Mar A, Norbury A, Steventon S, Moreno M, Caprioli D et al. High impulsivity predicting vulnerability to cocaine addiction in rats: some relationship with novelty preference but not novelty reactivity, anxiety or stress. Psychopharmacology 2011; 215: 721–731.

    CAS  PubMed  Google Scholar 

  213. Dalley JW, Everitt BJ, Robbins TW . Impulsivity, compulsivity, and top-down cognitive control. Neuron 2011; 69: 680–694.

    CAS  PubMed  Google Scholar 

  214. Robbins T . The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology 2002; 163: 362–380.

    CAS  PubMed  Google Scholar 

  215. Economidou D, Pelloux Y, Robbins TW, Dalley JW, Everitt BJ . High impulsivity predicts relapse to cocaine-seeking after punishment-induced abstinence. Biol Psychiatry 2009; 65: 851–856.

    CAS  PubMed  Google Scholar 

  216. Parker MO, Millington ME, Combe FJ, Brennan CH . Development and implementation of a three-choice serial reaction time task for zebrafish (Danio rerio). Behav Brain Res 2012; 227: 73–80.

    PubMed  Google Scholar 

  217. Parker M, Ife D, Ma J, Pancholi M, Smeraldi F, Straw C et al. Development and automation of a test of impulse control in zebrafish. Front Syst Neurosci 2013; 7: 65.

    PubMed  PubMed Central  Google Scholar 

  218. Parker MO, Brock AJ, Sudwarts A, Brennan CH . Atomoxetine reduces anticipatory responding in a 5-choice serial reaction time task for adult zebrafish. Psychopharmacology 2014; 231: 2671–2679.

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Robinson ES, Eagle DM, Mar AC, Bari A, Banerjee G, Jiang X et al. Similar effects of the selective noradrenaline reuptake inhibitor atomoxetine on three distinct forms of impulsivity in the rat. Neuropsychopharmacology 2008; 33: 1028–1037.

    CAS  PubMed  Google Scholar 

  220. Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J . Preservation of duplicate genes by complementary, degenerative mutations. Genetics 1999; 151: 1531–1545.

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Nguyen M, Yang E, Neelkantan N, Mikhaylova A, Arnold R, Poudel MK et al. Developing 'integrative' zebrafish models of behavioral and metabolic disorders. Behav Brain Res 2013; 256: 172–187.

    PubMed  Google Scholar 

  222. Ito H, Yamamoto N . Non-laminar cerebral cortex in teleost fishes? Biol Lett 2009; 5: 117–121.

    PubMed  Google Scholar 

  223. Aizawa H . Habenula and the asymmetric development of the vertebrate brain. Anat Sci Int 2013; 88: 1–9.

    PubMed  Google Scholar 

  224. Tomaiuolo M, Gonzalez C, Medina JH, Piriz J . Lateral Habenula determines long-term storage of aversive memories. Front Behav Neurosci 2014; 8: 170.

    PubMed  PubMed Central  Google Scholar 

  225. Agetsuma M, Aizawa H, Aoki T, Nakayama R, Takahoko M, Goto M et al. The habenula is crucial for experience-dependent modification of fear responses in zebrafish. Nat Neurosci 2010; 13: 1354–1356.

    CAS  PubMed  Google Scholar 

  226. Amo R, Aizawa H, Takahoko M, Kobayashi M, Takahashi R, Aoki T et al. Identification of the zebrafish ventral habenula as a homolog of the mammalian lateral habenula. J Neurosci 2010; 30: 1566–1574.

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Okamoto H, Agetsuma M, Aizawa H . Genetic dissection of the zebrafish habenula, a possible switching board for selection of behavioral strategy to cope with fear and anxiety. Dev Neurobiol 2012; 72: 386–394.

    PubMed  Google Scholar 

  228. Shimada Y, Hirano M, Nishimura Y, Tanaka T . A high-throughput fluorescence-based assay system for appetite-regulating gene and drug screening. PLoS ONE 2012; 7: e52549.

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 2013; 499: 295–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Chatterjee D, Shams S, Gerlai R . Chronic and acute alcohol administration induced neurochemical changes in the brain: comparison of distinct zebrafish populations. Amino acids 2014; 46: 921–930.

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Hough LB . Histamine. Lippincott-Raven: Phidadelphia, 1999.

    Google Scholar 

  232. Gerlai R . Antipredatory behavior of zebrafish: adaptive function and a tool for translational research. Evol Psychol 2013; 11: 591–605.

    PubMed  Google Scholar 

  233. Cachat J, Canavello P, Elegante M, Bartels B, Hart P, Bergner C et al. Modeling withdrawal syndrome in zebrafish. Behav Brain Res 2010; 208: 371–376.

    CAS  PubMed  Google Scholar 

  234. Chatterjee D, Gerlai R . High precision liquid chromatography analysis of dopaminergic and serotoninergic responses to acute alcohol exposure in zebrafish. Behav Brain Res 2009; 200: 208–213.

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Pan Y, Chatterjee D, Gerlai R . Strain dependent gene expression and neurochemical levels in the brain of zebrafish: focus on a few alcohol related targets. Physiol Behav 2012; 107: 773–780.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ research has been supported by grants from the National Institutes of Health (NIAAA AA015325-01A2 to RG, NIDA DA030900-02 to AVK and NINDS NS077295-01 to JFPU), the EU FP7 Framework Program (Grant 602805 to WHJN), as well as the National Center for the Replacement, Reduction and Refinement of Animals in Research (NC3Rs, UK, G1000053 to CHB) and the Medical Research Council (MRC, UK to CHB). CHB is a Royal Society (UK) Industrial Research Fellow. The study was coordinated and facilitated by the International Zebrafish Neuroscience Research Consortium (ZNRC). AVK is the Director of ZENEREI Institute and Chair of ZNRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A V Kalueff.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stewart, A., Ullmann, J., Norton, W. et al. Molecular psychiatry of zebrafish. Mol Psychiatry 20, 2–17 (2015). https://doi.org/10.1038/mp.2014.128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.128

This article is cited by

Search

Quick links